
ORIGINAL RESEARCH
published: 04 August 2015

doi: 10.3389/fpsyg.2015.01119

Edited by:
Paola Ricciardelli,

University of Milano-Bicocca, Italy

Reviewed by:
Marco Tullio Liuzza,

Sapienza University of Rome, Italy
Andrea Marotta,

Sapienza University of Rome, Italy

*Correspondence:
Mario Dalmaso,

Department of Developmental
and Social Psychology, University

of Padova, Via Venezia 8,
35131 Padova, Italy

mario.dalmaso@gmail.com

Specialty section:
This article was submitted to

Cognition,
a section of the journal
Frontiers in Psychology

Received: 22 April 2015
Accepted: 20 July 2015

Published: 04 August 2015

Citation:
Dalmaso M, Castelli L, Priftis K,

Buccheri M, Primon D, Tronco S
and Galfano G (2015) Space-based

and object-centered gaze cuing
of attention in right

hemisphere-damaged patients.
Front. Psychol. 6:1119.

doi: 10.3389/fpsyg.2015.01119

Space-based and object-centered
gaze cuing of attention in right
hemisphere-damaged patients
Mario Dalmaso1*, Luigi Castelli1,2, Konstantinos Priftis3,4, Marta Buccheri1,
Daniela Primon5, Silvia Tronco5 and Giovanni Galfano1,2

1 Department of Developmental and Social Psychology, University of Padova, Padova, Italy, 2 Center for Cognitive
Neuroscience, University of Padova, Padova, Italy, 3 Department of General Psychology, University of Padova, Padova, Italy,
4 Human Inspired Technologies Research Center, University of Padova, Padova, Italy, 5 Department of Rehabilitation, Unità
Locale Socio Sanitaria 15, Cittadella, Italy

Gaze cuing of attention is a well established phenomenon consisting of the tendency to
shift attention to the location signaled by the averted gaze of other individuals. Evidence
suggests that such phenomenon might follow intrinsic object-centered features of the
head containing the gaze cue. In the present exploratory study, we aimed to investigate
whether such object-centered component is present in neuropsychological patients with
a lesion involving the right hemisphere, which is known to play a critical role both in
orienting of attention and in face processing. To this purpose, we used a modified gaze-
cuing paradigm in which a centrally placed head with averted gaze was presented either
in the standard upright position or rotated 90◦ clockwise or anti-clockwise. Afterward,
a to-be-detected target was presented either in the right or in the left hemifield. The
results showed that gaze cuing of attention was present only when the target appeared
in the left visual hemifield and was not modulated by head orientation. This suggests
that gaze cuing of attention in right hemisphere-damaged patients can operate within
different frames of reference.

Keywords: gaze cuing, object-centered attention, right hemisphere-damaged patients, hemispheric asymmetry,
social cognition

Introduction

The eyes of our conspecifics represent a privileged target for our attention, as shown by several
recent studies (e.g., Birmingham et al., 2008; Levy et al., 2013; Boggia and Ristic, 2015). The
prioritized processing of eye gaze stimuli might be related to the fact that they are a valuable
source of information which provides important insights not only about where other individuals
are attending to, but also about their internal states such as future intentions or beliefs (e.g., Baron-
Cohen, 1995). This, in turn, can help us developing a better interaction with our social and physical
environment (e.g., Emery, 2000; Shepherd, 2010).

The relevance of the eye gaze of others has been testified by a phenomenon known as gaze
cuing of attention, which consists of the tendency to shift attention in the direction gazed
by a face (for a review, see Frischen et al., 2007). This can be empirically investigated by
asking participants to manually respond to a lateralized target that is preceded by the onset
of a task-irrelevant centrally placed face with averted gaze. Shorter reaction times (RTs) are
generally observed when the target appears at the same spatial location indicated by the gaze
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of the face stimulus, rather than when the target appears
elsewhere (i.e., the gaze-cuing effect; see Friesen and Kingstone,
1998). This pattern of results confirms that individuals tend
to shift attention towards the same direction indicated by eye
gaze stimuli (see also Driver et al., 1999; Galfano et al., 2012).
The intrinsic social nature of this type of behavior has recently
been supported by several studies conducted both on healthy
participants (e.g., Teufel et al., 2010; Schulz et al., 2014; Cole
et al., 2015) and on clinical populations (e.g., Nestor et al.,
2010; Dalmaso et al., 2013, 2015; Marotta et al., 2014). In
particular, as for healthy participants, it has been shown that gaze
cuing is strongly affected by social variables related to both the
observer and the person observed, as well as to the relationship
between the two individuals. For instance, group membership
(e.g., Pavan et al., 2011; Ciardo et al., 2014; Chen and Zhao, 2015),
social status/dominance (e.g., Jones et al., 2010; Dalmaso et al.,
2012, 2014), political affiliation (Liuzza et al., 2011, 2013; see
also Carraro et al., 2015), trustworthiness (e.g., Süßenbach and
Schönbrodt, 2014), and participants’ age (e.g., Slessor et al., 2008;
Kuhn et al., 2015), autistic traits (e.g., Senju et al., 2004; Bayliss
et al., 2005; Ristic et al., 2005) or phobias (e.g., Pletti et al., 2015)
can all impact gaze cuing of attention.

The great relevance of gaze in shaping human behavior
prompted researchers to hypothesize the presence of a
neurocognitive mechanism specifically devoted to gaze cuing of
attention, although the results are not always consistent (e.g.,
Hietanen et al., 2006; Tipper et al., 2008; Nummenmaa and
Calder, 2009). However, according to a recent neuroimaging
study, the neural underpinnings of gaze cuing of attention
seem to involve several brain areas related to gaze and face
processing (Callejas et al., 2014). In more detail, these brain
areas would first process sensory information conveyed by
facial stimuli and, subsequently, this information would be
passed to several regions involved in orienting of attention.
Interestingly, these regions would mostly be located in the
right hemisphere – which is well known to be specialized
for face processing (e.g., Ojemann et al., 1992) – and would
include the right-posterior superior temporal sulcus, the right-
posterior intraparietal sulcus, and the right-inferior frontal
junction.

The involvement of the right hemisphere in gaze cuing
of attention has been also investigated in studies adopting a
causal approach with both healthy individuals (e.g., Porciello
et al., 2014) and neuropsychological patients. As for the studies
with patients, Kingstone et al. (2000) observed gaze cuing of
attention in two split-brain patients, but only when a lateralized
eye gaze cue was projected towards the right hemisphere.
Interestingly, when gaze cues were replaced with a non-social
cue such as an arrow, the cuing effect was bilateral (Ristic
et al., 2002). Other studies focused on patients with brain
lesions which were specifically localized in the right hemisphere.
In this regard, Akiyama et al. (2006) observed a preserved
arrow cuing of attention in the face of an impaired gaze
cuing of attention in a patient with a rare lesion circumscribed
to the right superior temporal gyrus, which has been shown
to be crucially involved in face and gaze processing (e.g.,
Allison et al., 2000). However, no clear conclusion about the

eventual lateralization of the effects as a function of the visual
hemifield can be drawn because only right-sided targets were
tested because of the patient’s left hemianopia. Furthermore,
Vuilleumier (2002) presented four right hemisphere-damaged
patients with peripheral targets and eye gaze cues (Experiments
4 and 5) or arrow cues (Experiment 6). Even if left neglect was
present in all participants, eye gaze stimuli elicited a reliable
orienting detectable even in the contralesional side, whereas
arrow cuing of attention was overall weaker. More recently,
Bonato et al. (2009) tested right hemisphere-damaged patients
(either with or without left neglect) by presenting centrally placed
symbolic cues (i.e., arrows and numbers) and schematic eye
gaze stimuli. Strikingly, in both groups (patients with or without
left neglect) reliable orienting of spatial attention emerged in
response to arrow cues but not to numbers, whereas eye gaze
produced orienting of attention only in patients without left
neglect.

All the aforementioned neuropsychological studies provided
interesting insights regarding the functioning of a broad brain
network that would support gaze cuing of attention. Even if a
direct comparison of the findings of those studies is difficult
because of the type of different brain lesions characterizing
the patients and because of the adopted paradigms, a common
feature of these studies is that they only focused on the space-
based component of visual attention. Indeed, participants were
presented with centrally placed faces (or eyes only) displayed
upright and targets could generally appear either in the gazed-
at location or in the opposite hemifield. This approach, however,
does not allow to tease apart the contribution of two different
modalities of attention shifting depending on specific reference
frames. Indeed, on the one hand, attention mechanisms operate
on simple spatial coordinates along hypothetic spatial vectors.
However, we know that humans can shift their attention
at least within another frame of reference, which is object-
centered (e.g., Fink et al., 1997; Behrmann and Tipper, 1999).
In this case, the way individuals allocate their attentional
resources in response to a cuing stimulus is shaped by intrinsic
structural features of the object rather than by the simple
spatial information it conveys. According to neuroimaging
evidence, space-based and object-centered attention mechanisms
would be mainly served by common brain regions primarily
located in the parietal cortex. In particular, these brain regions
would include the left lateral inferior parietal cortex, the left
prefrontal cortex, the left and right medial superior parietal
cortex and also the cerebellar vermis (Fink et al., 1997). In
addition, other brain regions would be differently recruited
for the two frames of reference. Indeed, while object-centered
attention would also recruit the left striate and prestriate
cortex, space-based attention would recruit regions located in
the right hemisphere such as the inferior temporal/fusiform
gyrus and the dorsolateral prefrontal cortex (Fink et al.,
1997).

In the same vein, studies addressing the relationship between
gaze cuing and frames of reference provided evidence that
attentional shifts occur even when the head is not presented
in the standard upright position (Bayliss et al., 2004; see also
Bayliss and Tipper, 2006). In more detail, Bayliss et al. (2004)
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employed a standard gaze-cuing task in which a central face
with direct gaze suddenly looked rightwards or leftwards. After
that, a to-be-detected target was presented either in the right
or in the left hemifield. The peculiarity of this task was that
the facial stimulus could appear either in the canonical upright
orientation, resulting in a face looking rightwards or leftwards,
or rotated 90◦ clockwise or anti-clockwise, resulting in a face
looking upwards or downwards. When the face was presented
upright, participants were faster in detecting targets that appeared
in the same spatial location indicated by eye gaze (space-based
orienting). Intriguingly, when the face was presented rotated,
participants were still faster in detecting targets that appeared
in the spatial location that would have been looked by the
face, had this been presented upright (object-centered orienting).
For instance, faces rotated 90◦ clockwise with eye gaze directed
downwards elicited faster responses for targets that appeared
on the right than on the left part of the screen. On the
contrary, faces rotated 90◦ anti-clockwise with eye gaze directed
downwards elicited faster responses for targets that appeared on
the left than on the right side of the screen. This pattern of
results is in line with previous evidence that suggested that eye
gaze direction and head orientation are computed in parallel
(e.g., Langton et al., 2000) rather than sequentially (i.e., eye
gaze direction first, followed by head orientation), as originally
proposed by the pioneering studies conducted by Perrett et al.
(1992). This would explain the presence of the gaze cuing effect
even within the object-centered frame: in this case, individuals
would tend to compute gaze direction as if the head was
oriented upright, which is undoubtedly more likely to occur
during everyday social interactions (see Bayliss andTipper, 2006).
From a neuroanatomical perspective, the computation of eye
gaze and head directions would be mainly supported by the
right superior temporal sulcus, a brain area heavily involved
in face processing (e.g., Haxby et al., 2000). However, more
work is needed in order to get a broader picture concerning
the neural mechanisms underlying this social form of spatial
orienting.

Interestingly, both space-based and object-centered attention
components seem to be preserved in right hemisphere-damaged
patients (e.g., Driver and Halligan, 1991; Behrmann and Tipper,
1999). For instance, Behrmann and Tipper (1999) presented right
hemisphere-damaged patients with two disks connected by a line
and placed one in the left hemifield and one in the right hemifield,
and two squares placed one in the left hemifield and one in
the right hemifield. In this frame, slower RTs were reported in
response to targets that appeared on stimuli (i.e., both circles
and squares) on the left rather that on the right. However, when
the two disks inverted their spatial position by rotating of 180◦,
slower RTs were reported in response to targets that appeared
on the right disk as compared to RTs in response to targets on
the left disk. As for squares, which contrary to disks remained
stationary, slower RTs continued to be reported in response to
left targets. These intriguing results seem to confirm that right
hemisphere-damaged patients can allocate visual attention in
different frames simultaneously. However, to the best of our
knowledge, so far no studies have investigated this ability in gaze
cuing of attention.

The aim of the present study was, therefore, twofold. Firstly,
we aimed to provide further evidence concerning gaze cuing
of attention in right hemisphere-damaged patients. Contrary to
previous studies using schematic faces as cuing stimuli (e.g.,
Vuilleumier, 2002; Bonato et al., 2009), here we employed 3D
avatars with a greater degree of ecological validity that should
make eye gaze stimuli particularly relevant. Indeed, according
to recent evidence, the sensitivity to eye gaze direction seems
to be decreased when line-drawn face stimuli – such as those
employed both in Bonato’s and in Vuilleumier’s studies – are
employed (Rossi et al., 2015). On the contrary, the use of 3D
avatars should facilitate the emergence of a robust gaze cuing of
attention maintaining, at the same time, a strict control on the
physical features of the facial stimuli.

Secondly, we aimed to explore whether right hemisphere-
damaged patients exhibit a specific difficulty in object-centered
gaze cuing of attention which could not be detected in previous
studies that invariably used upright faces (e.g., Vuilleumier,
2002). To this purpose, we exploited the paradigm devised
by Bayliss et al. (2004). Because for clinical testing a slightly
different experimental setting was employed, we first attempted
to replicate the main findings observed by Bayliss et al.
(2004) in a sample composed of young healthy individuals
(Experiment 1). In more detail, we expected, in line with
Bayliss et al. (2004), a reliable and comparable gaze cuing of
attention irrespectively of whether facial stimuli were presented
upright or rotated. The same task employed in Experiment 1
was then administered in Experiment 2 to a group of right
hemisphere-damaged patients, and to a matched group of
healthy controls. We focused on a sample of right hemisphere-
damaged patients in keeping with early neuropsychological
studies using spatial cuing procedures (e.g., Posner et al., 1984).
In addition, we included patients displaying diffused lesions
and did not address specific brain areas because neuroimaging
evidence suggests that a wide neural circuitry is involved in
face processing and social attention (e.g., Allison et al., 2000;
Haxby et al., 2000; Callejas et al., 2014). If right hemisphere-
damaged patients process eye gaze stimuli within different
frames of reference, then gaze cuing of attention should emerge
irrespectively of head orientation. On the contrary, if right
hemisphere-damaged patients process eye gaze stimuli only
within a canonical framing in which head stimuli are presented
upright, then gaze cuing of attention should be expected only
within this frame. In both cases, these results coming from
neuropsychological patients could hopefully provide new insights
concerning both the behavioral mechanisms and the neural
underpinnings of the space-based and the object-centered gaze
cuing of attention.

Experiment 1: Young Healthy Adults

Materials and Methods
Participants
Twenty-six first-year undergraduate students (Mean age = 19.27
years, SD = 0.604, 5 males, 4 left handed) enrolled at the
University of Padova participated in the experiment as part of

Frontiers in Psychology | www.frontiersin.org 3 August 2015 | Volume 6 | Article 1119

http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


Dalmaso et al. Gaze cuing in right hemisphere-damaged patients

course requirements. All participants were naïve to the purpose
of the experiment and provided a written consent. The study was
approved by the Ethics Committee for Psychological Research at
the University of Padova and it was conducted in accordance with
the Declaration of Helsinki.

Stimuli and Apparatus
Face stimuli consisted of eight 3D full-color avatars (4 males
and 4 females) created through FaceGen 3.1. For each face there
were three versions: one with direct gaze, one with gaze averted
rightwards and one with gaze averted leftward. Faces lacked
distracting elements such as hair and clothes (see also Pavan et al.,
2011).

Stimulus presentation and data collection were handled
through a laptop PC running E-prime 1.1. Participants sat 57 cm
from the monitor (1024 × 768 pixels, 60 Hz) on which stimuli
were presented against a gray background (R = 180, G = 180,
B = 180).

Procedure
The procedure was similar to that used by Bayliss et al.
(2004). Each trial began with a centrally placed black fixation
cross (1◦height × 1◦width) for 650 ms (see Figure 1),
followed by a face with direct gaze which served as a
pre-cue. Depending on condition, this face could appear
oriented in three different orientations: upright (space-based
frame; 16.8◦height × 14.4◦width), rotated 90◦ clockwise or
anti-clockwise (object-centered frame). In these two latter
orientations, the rotation was centered on the middle of the eyes.
After 1500 ms, the same face was presented with gaze averted
either rightwards or leftward, which served as a spatial cue.
After a fixed 500-ms stimulus onset asynchrony (SOA), a black
square (1.3◦height × 1.3◦width) which served as target appeared
13.3◦ to the right or to the left with respect to the center of
the screen. Participants were instructed to detect the target by
pressing the space bar as fast as possible with the index finger of
their dominant hand. In the space-based frame, a congruent trial
occurred when the target appeared on the same spatial location
gazed at by the upright face stimulus. In the object-centered
frame, a congruent trial occurred when the target appeared on the
same spatial location looked at by the rotated face stimulus had
this been presented upright (see Figure 1). Both cue and target
stimuli remained visible until the participant’s response or until
3000 ms elapsed, whichever came first. We also included catch
trials to prevent anticipatory responses. In the case of a catch
trial, the target did not appear and participants were instructed
to refrain from responding. The red words “NO RESPONSE”
and “ERROR” were presented when participants did not respond
within 3000 ms (i.e., missed responses) and when they responded
on catch trials (i.e., false alarms), respectively.

On each trial, face frame (upright vs. rotated), gaze direction
(left vs. right), and target location (left vs. right) were selected
randomly. Each combination of these factors was presented an
equal number of times. When the face was not upright, head
was equally likely to be rotated clockwise or anti-clockwise.
The participants were informed that head orientation and gaze
direction were both uninformative about the spatial location

of the upcoming target, which could appear either on the
right or the left with the same probability. Moreover, they
were also asked to maintain their eyes on the center of
the screen for the whole duration of the experiment. There
was a practice block composed of 9 target-present trials and
3 catch trials, followed by three experimental blocks each
composed of 64 target-present trials and 16 catch trials.
The whole experiment was composed of 240 experimental
trials.

Results
Data Reduction
Missed responses (0.24 % of trials) and false alarms (0.4 % of
trials) were removed and, because of their low rate of frequency,
they were not analyzed further. Anticipations, defined as RTs less
than 100 ms and outliers, defined as RTs that fall 3 SD above the
mean of each participant were also removed (1.5% of trials; see
also Bonato et al., 2009).

Reaction Time Analysis
Reaction times for correct responses were analyzed using JASP
0.7 software (Love et al., 2015) through a repeated-measures
ANOVA with cue-target spatial congruency (2: congruent vs.
incongruent) and frame (2: spatial vs. object) as within-
participant factors. Furthermore, in order to assess which model
(i.e., H0 vs. H1) was more likely supported by the current
data, the Bayes Factor (BF; e.g., Rouder et al., 2009) was also
computed.

The only significant main effect was cue-target spatial
congruency, F(1,25) = 8.484, p = 0.007, η2p = 0.253, confirming
the presence of an overall gaze-cuing effect with shorter RTs on
spatially congruent trials (M = 328 ms, SE = 7.06) than on
spatially incongruent trials (M = 334 ms, SE = 7.64). The main
effect of frame only approached significance, F(1,16) = 3.966,
p = 0.057, η2

p = 0.137 (see Figure 2). Importantly, the cue-
target spatial congruency × frame interaction was not significant
(F < 1, p = 0.894), suggesting a comparable gaze-cuing effect
in each frame. In line with this, BF analysis showed that the
model with only main effects, BF10 = 9.829, was preferable
over the model also including the interaction, BF10 = 2.632.
For completeness, one-tailed paired t-tests were performed
between congruent and incongruent trials divided by frame.
These analyses revealed a significant gaze-cuing effect both in
the space-based frame, t(25) = 2.147, p = 0.021, dz = 0.421,
and in the object-centered frame, t(25) = 2.097, p = 0.023,
dz = 0.411 (see Figure 2). BF analysis showed that both in the
space-based frame, BF10 = 2.610, and in the object-centered
frame, BF10 = 2.843, the model supporting H1 (i.e., the presence
of the gaze cuing effect) was preferable over the model supporting
H0 (i.e., the absence of the gaze cuing effect).

Overall, this pattern of results is fully consistent with the
findings reported by Bayliss et al. (2004), and it confirms that the
paradigm used here is suitable for revealing both a space-based
and an object-centered component in gaze cuing. Therefore, the
same paradigm was also used in Experiment 2 in order to assess
whether those two components emerged in right hemisphere-
damaged patients.
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FIGURE 1 | Stimuli (not drawn to scale) and sequence of events for (A) an incongruent trial with a head oriented upright (space-based frame), (B) a
congruent trial with a head oriented clockwise (object-centered frame), and (C) an incongruent trial with a head oriented anti-clockwise
(object-centered frame).

Experiment 2: Right
Hemisphere-Damaged Patients vs.
Healthy Matched Controls

Materials and Methods
Participants
The experimental group was composed of eleven individuals
recruited in a public clinic located in northern Italy. They were
recruited on the basis of the lack of mental retardation and
a diagnosis of brain lesions limited to the right hemisphere,
in accordance with board-certified neuroradiological reports
(see Figure 3). Two patients were excluded from the analyses,
because of difficulties in understanding the instructions and
completing the experiment. The final sample was thus composed
of nine patients (Mean age = 63 years, SD = 15.2, mean
education = 7.56 years, SD = 2.65, three females, all right
handed). Demographic and clinical information of patients is
reported in Table 1.

The control group was composed of 9 healthy
individuals (Mean age = 63.11 years, SD = 15.44, mean
education = 11.22 years, SD = 5.26, three females, all right
handed), recruited in the local population to match the patients

FIGURE 2 | Mean reaction times (RTs) for all conditions in
Experiment 1. Asterisks denote p < 0.05. Error bars are SEM.

for age, education, gender, and handedness. Two-tailed paired
t-tests between mean age, t(16) = 0.15, p = 0.988, and education,
t(16) = 1.867, p = 0.087, of patients and controls confirmed
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FIGURE 3 | Magnetic resonance imaging and Computed Tomography scans of right hemisphere-damaged patients. The right hemisphere is displayed
on the right in each brain scan.

that the two groups were roughly comparable. An interview was
administered to all of them in order to exclude previous history
of neurological disease.

Stimuli and Apparatus
Stimuli and apparatus were identical to those employed in
Experiment 1.

Procedure
The procedure was identical to that employed in Experiment 1.

Results
Data Reduction
Data reduction was the same as that adopted in Experiment
1. Missed responses (6.35% of trials) and false alarms (2.08%
of trials) were removed and analyzed separately. Anticipations,
defined as RTs less than 100 ms and outliers, defined as RTs that
fall 3 SD above the mean of each participant were also removed
(1.24% of trials).

Reaction Time Analysis
Reaction times for correct responses were analyzed using JASP
0.7 software (Love et al., 2015) through a mixed-design ANOVA
with cue-target spatial congruency (2: congruent vs. incongruent)
and frame (2: spatial vs. object) as within-participant factors.

Hemifield (2: right vs. left) was also included as within-
participant factor in order to investigate the potential presence
of lateralized effects in right hemisphere-damaged patients (see
also Bonato et al., 2009). Group (2: right hemisphere-damaged
patients vs. healthy controls) was included as between-participant
factor.

The main effect of cue-target spatial congruency was
significant, F(1,16) = 5.568, p = 0.031, η2

p = 0.258, confirming
the presence of an overall gaze-cuing effect with shorter RTs
on spatially congruent trials (M = 697 ms, SE = 68.24) than
on spatially incongruent trials (M = 725 ms, SE = 70.96), as
well as the main effect of hemifield, F(1,16) = 8.738, p = 0.009,
η2
p = 0.353, owing to shorter RTs when the target appeared

on the right hemifield (M = 634 ms, SE = 57.12) rather
than on the left hemifield (M = 788 ms, SE = 87.91). The
main effect of group was also significant, F(1,16) = 6.116,
p = 0.025, η2

p = 0.277, owing to shorter RTs in healthy
participants (M = 539 ms, SE= 63.22) than in right hemisphere-
damaged patients (M = 883 ms, SE = 123.53). The cue-
target spatial congruency × hemifield interaction was significant,
F(1,16) = 9.998, p = 0.006, η2

p = 0.385, as well as the
hemifield × group interaction, F(1,16) = 10.244, p = 0.006,
η2
p = 0.390, while the cue-target spatial congruency × group

interaction was not significant, F(1,16) = 3.269, p = 0.089,
η2
p = 0.190.
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TABLE 1 | Demographic and clinical data for right hemisphere-damaged patients in Experiment 2.

Patient AS MZ GC SR SS ST LB GS MS

Age (years) 76 64 50 48 39 60 81 67 82

Education
(years)

5 10 7 13 7 8 5 8 5

Gender Female Male Male Male Male Male Female Male Female

Handedness R R R R R R R R R

Lesion sitea P, T F, P, T F O F, P, T IP TN PA, F P, O, CN

Etiologyb I I H I H H I H I

Hospitalization Yes No No Yes No Yes Yes Yes No

Time since
lesionc (days)

79 835 131 64 447 60 23 62 7

aConfirmed by neuroradiological reports. CN, caudate nucleus; F, frontal; IP, intraparenchymal; O, occipital; P, parietal; PA, parenchymal; T, temporal; TN, thalamic nucleus.
bH, hemorrhagic; I, ischemic. cAcute event.

Importantly, all the previous two-way interactions were
qualified by the cue-target spatial congruency × hemifield
× group three-way interaction, F(1,16) = 4.713, p = 0.045,
η2
p = 0.228. This three-way interaction was further analyzed

through two separate ANOVAs as a function of the hemifield
with cue-target spatial congruency as within-participant factor
and group as between-participant factor. As for targets appearing
on the right hemifield, the main effect of group was not
significant, F(1,16) = 2.374, p = 0.143, η2

p = 0.129, but the
means indicated that RTs were shorter in healthy participants
(M = 546 ms, SE = 65.19) than in right hemisphere-damaged
patients (M = 722 ms, SE = 93.82). All other results were non-
significant (Fs < 1, ps > 0.436; BF10s < 1). Nevertheless, for
completeness, one-tailed paired t-tests between congruent and
incongruent trials divided by group confirmed that the gaze-
cuing effect was absent both in healthy controls, t(8) = –0.605,
p = 0.281, dz = –0.202, and in right hemisphere-damaged
patients, t(8) = –0.620, p = 0.276, dz = –0.207 (see Figure 4). BF
analysis showed that both in healthy controls, BF10 = 0.222, and
in right hemisphere-damaged patients, BF10 = 0.221, the model
supporting H0 was preferable over the model supporting H1.

As for targets appearing on the left hemifield, the main effect
of cue-target spatial congruency was significant, F(1,16) = 9.951,
p = 0.006, η2

p = 0.383, owing to shorter RTs on spatially
congruent trials (M = 756 ms, SE = 83.98) than on spatially
incongruent trials (M = 821 ms, SE = 92.84), as well as the main
effect of group, F(1,16) = 8.425, p = 0.010, η2

p = 0.345, owing to
overall shorter RTs in healthy controls (M = 533 ms, SE = 61.61)
than in right hemisphere-damaged patients (M = 1043 ms,
SE = 164.68). The cue-target spatial congruency × group
interaction was also significant, F(1,16) = 5.170, p = 0.037,
η2
p = 0.244. One-tailed paired t-tests between congruent and

incongruent trials divided by group indicated that the gaze-
cuing effect was present both in healthy controls, t(8) = 2.244,
p = 0.028, dz = 0.748, and in patients, t(8) = 2.768, p = 0.012,
dz = 0.923, but the effect was much stronger in the latter
case (18 ms vs. 112 ms)1. BF analysis showed that both in

1The fact that gaze cuing emerged only when target appeared in the left hemifield
could be expected for right hemisphere-damaged patients. A similar pattern for
healthy controls, however, should not come as a surprise, in that a recent study

healthy controls, BF10 = 3.261, and in right hemisphere-damaged
patients, BF10 = 6.195, the model supporting H1 was preferable
over the model supporting H0.

Because Bonato et al. (2009) documented the presence of
a disengagement deficit in their patients, at least when arrow
cues were used, we also implemented their formula to explore
whether such phenomenon was also evident in our sample.
To this end, the gaze cuing effect (RTincongruent – RTcongruent)
was separately calculated for targets appearing in the left and
in the right hemifield, and the difference between them was
finally computed (Cuingleft – Cuingright). A one-sample t-test
showed that this index was significantly different from zero,
t(8) = 2.761, p = 0.025, dz = 0.920, thus confirming the
presence of a disengagement deficit in our sample of right
hemisphere-damaged patients. BF analysis showed that the
model supporting H1 was preferable over the model supporting
H0, BF10 = 3.134.

Importantly, all the interactions involving cue-target spatial
congruency and frame were not significant (Fs < 1, ps > 0.443,
BF10s < 1), suggesting a comparable gaze-cuing effect for the
two frames (see Table 2). Nevertheless, for completeness, one-
tailed paired t-tests were performed between congruent and
incongruent trials divided by frame and group. These analyses
were carried out only for target appearing on the left hemifield
since the gaze-cuing effect was observed only there. As for

found that even in healthy individuals gaze cuing was detectable only when targets
appeared on the left hemifield (Marotta et al., 2012a), likely reflecting the cerebral
hemispheric specialization for face processing. In order to test whether the gaze-
cuing effect emerged only in the left hemifield also in Experiment 1, we further
analyzed RTs data from Experiment 1 through a repeated-measures ANOVA with
cue-target spatial congruency (2: congruent vs. incongruent), frame (2: space-
based vs. object-centered) and hemifield (2: right vs. left) as within-participant
factors. The results remained virtually unchanged. Indeed, the only significant
result was the cue-target spatial congruency main effect, F(1,25)= 8.534, p= 0.007,
η2
p = 0.254. The cue-target spatial congruency × hemifield interaction did not

reach significance, F(1,25) = 1.289, p = 0.267, η2
p = 0.049, although the gaze

cuing effect (RTincongruent – RTcongruent) was larger for targets appearing on the
left hemifield (7 ms) as compared to the right hemifield (3 ms). Interestingly, one-
sample t-tests confirmed that the gaze-cuing effect was statistically different from
zero in the left hemifield, t(25) = 2.870, p = 0.008, dz = 0.563, but not in the right
hemifield, t(25)= 1.165, p= 0.255, dz = 0.228. In line with this, BF analysis showed
that the model supporting H1 was preferable over the model supporting H0 in the
left hemifield, BF10 = 5.566, but not in the right hemifield, BF10 = 0.381.
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FIGURE 4 | Mean RTs in left and right hemifield in right
hemisphere-damaged patients vs. healthy controls. Asterisks denote
p < 0.05. NS, Non-Significant; Error bars are SEM.

healthy controls, a significant gaze cuing emerged in the space-
based frame, t(8) = 2.325, p = 0.024, dz = 0.775, while in the
object-centered frame the effect was not significant, t(8) = 0.719,
p = 0.246, dz = 0.240, although means were in the expected
direction, with shorter RTs on congruent trials (M = 534 ms,
SE= 59.17) than on incongruent trials (M = 540ms, SE= 63.41).
BF analysis showed that the model supporting H1 was preferable
over the model supporting H0 in the space-based frame,
BF10 = 3.601, while in the object-centered frame this was less
evident, BF10 = 0.587. Patients oriented attention in response
to gaze both in the space-based frame, t(8) = 1.866, p = 0.049,
dz = 0.622, and in the object-centered frame, t(8) = 2.258,
p = 0.027, dz = 0.753. BF analysis showed that the model
supporting H1 was preferable over the model supporting H0
both in the space-based frame, BF10 = 2.066, and in the object-
centered frame, BF10 = 3.320.

Error Analysis
Missed responses were analyzed through a mixed-effect logit
model (e.g., Jaeger, 2008). In this analysis, cue-target spatial
congruency, frame, hemifield, and group were treated as fixed
effects, and participant was treated as random effect. In a
first model, both main effects and interactions were tested.
Under these circumstances, no significant results emerged
(ps > 0.152). For this reason, a second model was implemented
considering only the main effects. In this case, the main effect
of hemifield was significant, b = –1.440, SE = 0.173, z =
–8.316, p < 0.001, owing to more missed responses when
the target appeared on the left hemifield than on the right
hemifield. The main effect of group was also significant, b =
–5.094, SE = 1.236, z = –4.121, p < 0.001, owing to more
missed responses in right hemisphere-damaged patients than
in healthy controls (see Table 2). Other main effects were not
significant (ps > 0.635). Model comparison was performed

following the guidelines proposed by Bolker et al. (2009).
BIC values suggested that evidence supporting the model with
only main effects (BIC = 1132.8) over the model in which
also interactions were considered (BIC = 1213.0) was very
strong (�BIC = 81; see Raftery, 1995). In the same fashion,
the likelihood ratio test indicated that the model in which
also interactions were considered did not provide additional
information with respect to the model with only main effects, χ2

(11) = 9.691, p = 0.558.
Similarly, we also analyzed false alarms in catch trials through

a mixed-effect logit model with frame and group as fixed effects,
and participant as random effect. In a first model, both main
effects and interactions were tested. Under these circumstances,
no significant results emerged (ps > 0.258). For this reason,
a second model was implemented considering only the main
effects. In this case, the main effect of group was significant,
b = –4.992, SE = 1.209, z = –4.130, p < 0.001, owing to
more false alarms in right hemisphere-damaged patients than
in healthy controls (see Table 2). The main effect of frame was
not significant (p = 0.647). Model comparison was performed
following the guidelines proposed by Bolker et al. (2009).
BIC values suggested that evidence supporting the model with
only main effects (BIC = 1195.2) over the model in which
also interactions were considered (BIC = 1200.4) was positive
(�BIC= 5; see Raftery, 1995). In the same fashion, the likelihood
ratio test indicated that the model in which also interactions were
considered did not provide additional information with respect
to the model with only main effects, χ2(1) = 2.946, p = 0.09.

Discussion

The ability to orient attention in response to spatial signals
provided by our conspecifics represents a key element of human
behavior (e.g., Baron-Cohen, 1995), and research has focused
on both the cognitive aspects of the phenomenon as well as
on the neural underpinnings that would serve gaze cuing of
attention. Neuroimaging studies (e.g., Hietanen et al., 2006;
Tipper et al., 2008; Callejas et al., 2014) indicate that this
form of social orienting involves brain areas mainly localized
in the right hemisphere. The possible existence of a broad
neural network devoted to gaze cuing of attention emerged also
from neuropsychological studies (e.g., Vuilleumier, 2002; Bonato
et al., 2009) in which right hemisphere-damaged patients often
showed a relatively spared ability to shift attention toward spatial
locations indicated by eye gaze stimuli, at least when lesions
do not specifically involve the superior temporal gyrus and the
superior temporal sulcus (Akiyama et al., 2006).

The general aim of the present study was to provide
further evidence on gaze cuing of attention in a sample
of right hemisphere-damaged patients. Unlike previous
neuropsychological studies, which only focused on the space-
based component of gaze cuing of attention, here we also
explored the object-centered component of this form of
orienting. To reach this goal, in two experiments, we employed
a task similar to that devised by Bayliss et al. (2004) in which
a centrally placed head with averted gaze, displayed upright
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TABLE 2 | Mean reaction times (RTs; ms) and percentage of errors (%E) for all conditions in Experiment 2.

Group Scores Space-based frame Object-centered frame

Left hemifield Right hemifield Left hemifield Right hemifield

C I C I C I C I

Healthy individuals
(control group)

RTs 514 (58) 544 (67) 531 (69) 537 (68) 534 (59) 540 (63) 566 (65) 549 (60)

%E MR 0 (0) 0.46 (0.46) 0.46 (0.46) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

FA 1.39 (1.39) 0.46 (0.46)

Right hemisphere-
damaged patients

RTs 983 (153) 1113 (176) 702 (93) 692 (82) 991 (171) 1087 (173) 755 (101) 738 (108)

%E MR 16 (6.66) 20 (6.03) 7 (3.43) 6 (4.57) 20 (8.1) 18 (5.5) 8 (4.89) 6 (3.26)

FA 4.17 (3.68) 2.32 (1)

Values in brackets are SEM. C, congruent trial; I, incongruent trial; MR, Missed Responses; FA, False Alarms.

(space-based orienting) or rotated 90◦ clockwise or anti-
clockwise (object-centered orienting), preceded the onset of a
target that could appear either in the right or in the left hemifield.
In Experiment 1, we tested a sample of young healthy individuals.
The same task was also administered in Experiment 2 to a sample
of right hemisphere-damaged patients compared with a matched
group of healthy individuals.

As for the overall gaze-cuing effect, the results stemming
from right hemisphere-damaged patients were, on the whole,
consistent with those reported by Vuilleumier (2002) and Bonato
et al. (2009) in that the ability to shift attention in response
to eye gaze stimuli was preserved. However, gaze cuing was
significant only when targets appeared in the left hemifield (see
Bonato et al., 2009). This finding is in line with previous evidence
according to which right hemisphere-damaged patients often
suffer from a disengagement deficit of attention following a
spatially incongruent cue pointing to the right visual hemifield
(e.g., Posner et al., 1984; Bartolomeo et al., 2001; for a review,
see Bartolomeo and Chokron, 2002). In other words, responses
would be particularly slowed down when targets are presented in
the contralesional side (i.e., left visual hemifield) after a spatial
cue that pushed attention towards the ipsilesional side (i.e., right
visual hemifield). The presence of a disengagement deficit seems
more frequent in response to peripheral cues (see Losier and
Klein, 2001), although it has also been documented in response
to centrally placed arrow cues (Bonato et al., 2009; Olk et al.,
2010) but not in response to centrally placed eye gaze cues
(Bonato et al., 2009). Strikingly, our results provide first evidence
of a disengagement deficit in response to centrally placed gaze
cues in patients with a damage to the right hemisphere. Despite
the comparison between our results and those reported by
Bonato et al. (2009) must be taken with caution – due to
relevant differences in both the methodology and the clinical
samples – the discrepant pattern may be tentatively explained
by taking into account the specific type of eye gaze stimuli
used in the two studies. Indeed, while in the present study we
employed 3D avatars that suddenly moved their eyes rightwards
or leftwards – mimicking actual social interactions – in Bonato
et al. (2009), participants were presented with schematic eyes
in isolation (i.e., not embedded within a face) with static pupils

oriented rightwards or leftward. Interestingly, in the present
study, also participants from the control group showed a reliable
gaze cuing of attention only for targets appearing in the left
hemifield, even though this effect was significantly larger among
right hemisphere-damaged patients (i.e., 112 ms) as compared
to healthy participants (i.e., 18 ms, a magnitude which is in
line with previous reports; e.g., Friesen and Kingstone, 1998).
Gaze cuing of attention only in response to targets presented in
the left hemifield has also been documented in a recent study,
conducted by Marotta et al. (2012a), that administered to healthy
participants a similar paradigm to that employed here. In more
detail, Marotta et al. (2012a) asked participants to detect a target,
which could appear rightwards or leftwards, in the presence
of centrally presented task-irrelevant arrow and eye gaze cues
oriented rightwards or leftwards. Strikingly, while a reliable arrow
cuing of attention emerged irrespectively of whether the target
appeared in the left or in the right hemifield, a reliable gaze
cuing emerged only in response to targets appearing in the
left hemifield. The authors interpreted this pattern of results as
likely reflecting the specialization of the right hemisphere in face
processing (e.g., Ojemann et al., 1992). This conclusion is also
consistent with a previous study conducted in healthy individuals
that suggests that while symbolic spatial cuing of attention –
such as the one obtained with arrows – would be supported
by brain mechanisms spread bilaterally, gaze cuing of attention
would be specifically supported by brain areas located in the right
hemisphere (Greene and Zaidel, 2011). Moreover, as discussed
in the introduction, this scenario is also supported by evidence
coming from split-brain patients who exhibited arrow cuing of
attention in response to targets presented bilaterally in the face
of a gaze cuing of attention limited to targets presented to the left
(Kingstone et al., 2000; Ristic et al., 2002). However, the scarcity of
evidence on this topic invites to take this conclusion with caution
and future studies are necessary in order to test exhaustively the
possible different contribution that the two hemispheres provide
to the social and the symbolic cuing of attention.

One of the major goals of the present study, was also to address
the potential role of the frame of reference (i.e., space-based vs.
object-centered) in shaping attentional orienting. In Experiment
1, we replicated the pattern of results reported by Bayliss et al.
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(2004) in a sample of young healthy individuals. Indeed, a reliable
and comparable gaze cuing of attention emerged irrespectively
of head orientation. Importantly, in Experiment 2, a similar
pattern emerged, namely a gaze cuing of attention of similar
magnitude was observed both under space-based and object-
centered frames, at least when targets were presented in the left
hemifield. This finding provides further evidence supporting the
notion that, also in right hemisphere-damaged patients, visual
attention can operate within different frames of reference and
suggests that this ability is not limited to symbolic cues (e.g.,
Driver and Halligan, 1991; Behrmann and Tipper, 1999) but
it extends to a social stimulus such as eye gaze. An intriguing
research question that could be addressed in future studies is
to explore whether space-based orienting and object-centered
orienting are sensitive to context information such as in the case
in which reference objects (e.g., placeholders) are presented –
or not – in the periphery. Indeed, recent evidence has reported
that, when in a gaze cuing task no placeholders are presented,
the gaze cuing effect emerges not only in response to a specific
spatial location but instead it is also detectable in response to
targets appearing in different spatial locations within the cued
hemifield. On the contrary, when placeholders are used, the
gaze cuing effect emerges only in response to targets appearing
inside the placeholder (Wiese et al., 2013; see also Marotta et al.,
2012b for similar results). Following this rationale, it would
be interesting to employ a modified version of the paradigm
adopted in the present study in which the presence of peripheral
placeholders is manipulated. Following the results reported by
Wiese et al. (2013), in the presence of placeholders the gaze
cuing effect should emerge only within the space-based frame of
reference.

Future work could be carried out also to overcome some
limitations that characterize the present study. First of all, at the
time of testing we have been unable to administer standardized
measures of neuropsychological tests to all the individuals
of our clinical sample. This prevented us from assessing
the potential presence of hemispatial neglect and its possible
role in shaping socio-attentional mechanisms. For instance,
a neuropsychological assessment tool such as the Behavioral
Intentional Test (e.g., Wilson et al., 1987) could be employed
in order to unveil any potential relationship between symptom
variables and gaze cuing of attention within different frames of

reference. Furthermore, to what concerns the methodological
aspects of the paradigm employed here, it is important to
highlight the fact that we used a fixed 500-ms SOA. The main
reason for this choice was for coherence with the original study
of Bayliss et al. (2004) in which the same SOAwas used. However,
future studies could employ a broader range of SOA in order to
properly assess the temporal dynamics underlying the gaze cuing
effect within different frame of reference. Bayliss and Tipper
(2006), who employed a similar paradigm as that proposed in
Bayliss et al. (2004), used two SOAs of about 200 and 500 ms. In
both cases, they reported both space-based and object-centered
gaze cuing of attention, but at the shorter SOA this effect was
overall weaker, especially within the object-centered frame (gaze
cuing effect = 4 ms) as compared to the spatial-based frame (gaze
cuing effect = 9 ms).

In summary, our results confirm the presence of spared gaze
cuing of attention in right hemisphere-damaged patients, and are
overall consistent with previous studies (e.g., Vuilleumier, 2002;
Bonato et al., 2009). Furthermore, they provide first evidence that
gaze cuing of attention in right hemisphere-damaged patients
can operate within different frames of reference. Previous studies
only focused on symbolic spatial cues (e.g., Driver and Halligan,
1991; Behrmann and Tipper, 1999), and we here show that object-
centered orienting is preserved also for a relevant social cue
such as eye gaze. Because the study of the neural underpinnings
underlying gaze cuing of attention is still an ongoing endeavor,
further studies are necessary in order to achieve an exhaustive
scenario concerning the brain areas involved in this form of social
orienting. In this regard, the adoption of a causal approach based
on neuropsychological evidence, aimed to address the effects
of more focal lesions not limited to the right hemisphere (e.g.,
Vecera and Rizzo, 2004, 2006), represents a fruitful path for
future research.
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