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Functional near-infrared spectroscopy (fNIRS) uses near-infrared light to measure cortical concentration
changes in oxygenated (HbO) and deoxygenated hemoglobin (HbR) held to be correlated with cognitive ac-
tivity. Providing a parametric depiction of such changes in the classic form of stimulus-evoked hemodynamic
responses (HRs) can be attained with this technique only by solving two problems. One problem concerns
the separation of informative optical signal from structurally analogous noise generated by a variety of spu-
rious sources, such as heart beat, respiration, and vasomotor waves. Another problem pertains to the inherent
variability of HRs, which is notoriously contingent on the type of experiment, brain region monitored, and
human phenotype. A novel method was devised in the present context to solve both problems based on
a two-step algorithm combining the treatment of noise-only data extrapolated from a reference-channel
and a Bayesian filter applied on a per-trial basis. The present method was compared to two current methods
based on conventional averaging, namely, a typical averaging method and an averaging method
implementing the use of a reference-channel. The result of the comparison, carried out both on artificial
and real data, revealed a sensitive accuracy improvement in HR estimation using the present method relative
to each of the other methods.

© 2013 Elsevier Inc. All rights reserved.
Introduction

Functional near-infrared spectroscopy (fNIRS) is a low-cost neuroim-
aging technique that allows neuroscientists to study stimulus-evoked
functional and neural activity by monitoring non-invasively hemody-
namic changes occurring in specific brain regions (Boas et al., 2002;
Bunce et al., 2006; Gervain et al. 2011; Jöbsis, 1977). Sources of
near-infrared light and light-detectors are positioned in a principled
way on the scalp of human participants at a distance of approximately
3 cm. The light reaches the cerebral cortex, and is subject to known
optical phenomena, like refraction, scattering, and absorption by two
specific subcomponent of the blood tissue, oxy- and deoxy-hemoglobin
(HbO and HbR, respectively). Part of the light is redirected to the scalp,
where HbO/HbR concentration changes are in turn detected and trans-
lated quantitatively based on the Modified Beer Lambert Law (MBLL)
(Sassaroli and Fantini, 2004). Although reliable measurements of HbO/
HbR concentration are confined to the outer 2.5 cm of the cerebral tissue
underlying the scalp, fNIRS provides several advantages with respect to
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other current neuroimaging technologies, the most important being
the higher sampling rate relative to functionalmagnetic resonance imag-
ing, as well as safety, portability and increased resistance to movement
artifacts. The fNIRS technique has in fact been employed in a variety of
empirical investigations in cognitive neuroscience (for a review, see e.g.
Cutini et al., 2012; Ferrari and Quaresima, 2012). Like all other tech-
niques and instruments, a correct parameter estimation of the so-called
hemodynamic response (HR; spectral band centered at ≈ .1 Hz) using
fNIRS is pivotal to inform theories of human brain functioning, and not
devoid of the problems pervading every direct imaging effort to isolate
informative bio-signals fromnoise due to structurally analogous changes
modulated by physiological components other than those of interest.
Considering hemodynamics, sources of physiological noise range from
heart beat (spectral band centered at≈1 Hz), respiration (≈ .2 Hz), va-
somotor (or Mayer's) wave (≈ .1 Hz), and generators of low-frequency
oscillations (b .1 Hz) (Zhang et al., 2007), which jointly exert a particu-
larly strong camouflaging effect on brain-driven fNIRS signal. The HR
elicited by a single briefly presented stimulus has an amplitude typically
of b500 nM, which represents a relatively small fraction of total raw sig-
nal amplitudes recorded by detectors (>2000 nM).

Over the past decade, neuroscientists interested in localizing brain
activity underpinning the execution of specific cognitive tasks have
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progressively abandoned blocked designs, where hemodynamic
changes are tracked as temporally extended continua, in favor
of event-related designs (Rosen et al., 1998; Dale, 1999; see also
Cutini et al., 2011a), where the signal of interest is partitioned in
time-windows locked to the onset of each stimulus. Several methods
have been proposed to derive parametrically HRs from fNIRS signals
recorded using event-related designs (Huppert et al., 2009), a large
number of which resort to conventional averaging (CA) (Cutini
et al., 2008, in press; Näsi et al., 2010; Taga et al., 2011). Succinctly,
in CA, the HR is determined by averaging fNIRS signals time-locked
to stimuli falling in one particular condition of the experimental de-
sign. Implicit in the use of CA are two questionable assumptions,
that is, the independence of the activity elicited by each stimulus
from physiological noise and the difference in phase between physio-
logical noise and stimuli presentation rate. Other methods employed
for HR estimation are based on band-pass filtering (Jasdzewski et al.,
2003), principal component analysis (PCA) (Franceschini et al., 2006),
and general linear model (GLM) (Ye et al., 2009). Although all these
methods have proved beneficial in terms of signal gain, they have
also been associated with some disadvantages, sometimes involving
technical aspects of data acquisition and experiment duration (e.g.,
the acquisition of resting state data before each stimulus, or the reg-
istration of hemodynamic activity of the whole head), but also as-
pects with potential repercussions on data interpretation. Band-pass
filtering, for instance, reduces noises and HR to a similar extent,
given the above mentioned overlap in frequency spectra. PCA is also
effective in reducing noise. However, it does so by decreasing the am-
plitude of HR in the activated regions and by propagating noise from
perturbed channel(s) to remnant channels. GLMmethods rest heavily
on a-prioristic choices of basis functions, leaving aside that identical
basis functions are often used unwarrantedly for both HbO and HbR
without an appropriate treatment of variability ensuing from factors
naturally covarying with the factors manipulated in an experimental
design, such as inter-individual differences, sensory nature of stimuli
used, monitored brain areas, and inter-stimulus interval (ISI).

More promising for improving estimation of HR from fNIRS
measurements appear in present methods based on the use of
the so-called “reference-channel” (Gagnon et al., 2011; Saager et al.,
2011; Zhang et al., 2009). A reference-channel is denoted by a
source-detector distance shorter than 1 cm. Owing to the direct
relation between source-detector distance and depth reached by
photons within tissues underlying the scalp, fNIRS signal detected
by the reference-channel is unlikely to reflect hemodynamic activity
other than that taking place at the subdural tissues. In this vein,
signal from the reference-channel is ideal for deriving information
about noise generated by physiological sources but not influenced
by stimulus-evoked brain activity. Removing the noise recorded
from the reference-channel from standard-channels held to record
a combination of noise and brain activity is the first step of the
method presented herein. More specifically, the reference-channel
signal was used to estimate a parametric model of physiological
noise, which was in turn used to correct the signal recorded from
standard-channels. Our algorithm included a second step, in which
residual random noise was further reduced by adopting the Bayesian
filtering method described by Scarpa et al. (2010). HR estimates were
finally obtained by averaging stimulus-evoked HRs to stimuli falling
into one of two levels of a finger-tapping design composed of 40 tri-
als. The presented method was evaluated using synthetic and real
data, and compared with two CA methods for HR estimation, one of
which implements a solution based on the use of the reference-
channel. Results on 30 simulated datasets revealed the ability of
the present method to improve the accuracy of HR estimates, despite
their relatively small amplitudes (b500 nM for HbO and >−200 nM
for HbR), a finding that was corroborated after the results were sub-
mitted for testing via a receiver operating characteristic (ROC) analy-
sis. A sizable improvement of HR estimation accuracy was also
observed following its application on data acquired from 10 human
adults who carried out the finger-tapping task.

Material and methods

Database

In the forthcoming sections, a description of the real database
generated by administering the finger-tapping task is described
first, followed by a description of the method application on synthetic
data adherent to key features of the real data.

Real data
Ten right-handed participants (5 females, mean age 28, from 24 to

37) performed the experiment after providing informed consent.
Each participant was seated on a comfortable chair in a dimly lit
room in front of a LCD monitor placed at a viewing distance of
60 cm. The index fingers of the right and left hands were placed on
the “A” and “L” key respectively. Each trial began with a central fixa-
tion cross, followed 2 s later by a white arrow head pointing
unpredictably and with equal probability to the right (Condition 1)
or left (Condition 2) side of the monitor. Participants had to press
the “A” key twice if the white arrow pointed to the left, or the “L”
key twice if the white arrow pointed to the right. Each participant
performed a total of 80 trials, which were organized in two consecu-
tive sessions of 40 trials. An ISI ranging from 12 to 15 s elapsed be-
tween consecutive trials. The choice of this double-press finger-
tapping task was largely motivated by the expected small HR ampli-
tude (Brigadoi et al., 2012; Cutini et al., 2008, 2011a) characterized
however by well-established features replicated in several prior
fNIRS studies (Franceschini et al., 2006; Holper et al., 2009; Leff
et al., 2011; Lutz et al., 2005; Sato et al., 2007). No resting state inter-
vals were added between stimuli in order to reduce experimental
time, thereby limiting phenomena like fatigue, habituation, and reduc-
tion in sustained attention influencing the participants' performance.

The fNIRS signal was acquired with a multi-channel frequency-
domain NIR spectrometer (ISS Imagent™, Champaign, Illinois),
equipped with 40 laser diodes (20 emitting light at 690 nm, and 20
at 830 nm) and 4 photo-multiplier tubes. Sources and detectors
were held in place on the scalp using a custom-made holder and
velcro straps. Each source location comprised two source optical
fibers, one for each wavelength. Sources and detectors were posi-
tioned using a probe-placement method based on a physical model
of the ICBM152 template's head surface (Cutini et al., 2011b) and
their position is illustrated in Fig. 1: detectors A and B were placed
1 cm behind C3 and C4 (according to the international 10–20 sys-
tem), respectively. There were 10 standard-channels (characterized
by a source-detector distance of 3 cm): 1 (detector A — source 1), 2
(A-2), 3 (A-3), 4 (A-4), 5 (A-5) for the left and 6 (B-1), 7 (B-2),
8 (B-3), 9 (B-4), 10 (B-5) for the right hemisphere. In addition,
there were 4 reference-channels (characterized by a source-detector
distance of .7 cm): 11 (C-1), 12 (C-2) for the left and 13 (D-1), 14
(D-2) for the right hemisphere. The probe arrangement even provides
4 additional channels (sources 1 and 2 with detector C on the left
hemisphere and sources 1 and 2 with detector D on the right hemi-
sphere) with a source-detector distance equal to 1.5 cm: since they
are too close to be considered as standard-channels and, at the
same time, too far to be considered as reference-channels, they are
discarded from analyses. From each channel the signal relative
to HbO and the corresponding signal relative to HbR was derived.
To be noticed, only two reference-channels for each hemisphere
were placed. The dataset for each channel contains about 12,000
time-points, roughly corresponding to 25 min (1500 s). The sampling
frequency was 7.8125 Hz.

A representative example of the signal acquired by a reference-
channel and by a standard-channel is reported in Fig. 2a.



Fig 1. Probe placement: sources (red circles) and detectors (blue circles) overlaid on the head surface of the ICBM152 template. Green circles represent the sources of the
reference-channels.
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Synthetic data
Simulated datasets were generated so as to resemble as close as

possible the characteristics of real data. For each of the 30 simulated
subjects, 10 standard-channels for HbO and the corresponding 10
channels for HbR were generated, in addition to 2 reference-
Fig 2. a) Representative examples of signal acquired by reference-channel (magenta)
and by standard-channel (red). b) Synthetically generated time series (blue line) and
true HR (green line) in the synthetic dataset. The onset time is represented by a solid
black vertical line for Condition 1, and by a dashed vertical line for Condition 2: it is
the same for all represented signals in a) and b). The real signals reported in figure
are relative to channels located in the left hemisphere, so in the reported simulated sig-
nal the HR was added only in correspondence of a stimulus relative to Condition 1.
channels for each hemisphere, for both HbO and HbR. Thus, there
were a total of 14 channels for each type of hemoglobin.

Samples ysim(t) of each simulated channel were generated as:

ysim tð Þ ¼ k � utrue tð Þ þ ϕsim tð Þ þ η tð Þ þ r tð Þ ð1Þ

where utrue(t) was the true HR and was multiplied by the constant k
(which can be equal to 0, 0.5 or 1 depending on the channel; i.e., k
is 0 in the reference-channels and halved in some standard-channel,
described below), φsim(t) was the physiological noise term, η(t) was
the random noise, and r(t) was a noise term due to possible motion
artifacts.

The HR evoked by a single stimulus (t=0 corresponds to the
presentation of the stimulus), was modeled by a linear combination
of two gamma-variant functions Γn (Abdelnour and Huppert, 2009;
Lindquist and Wager, 2007), time dependent, with a total of 6
variable parameters:

utrue tð Þ ¼ α � Γn t; τ1;ρ1ð Þ−β � Γn t; τ2;ρ2ð Þ½ � ð2Þ

with:

Γn t;τ j;ρ j

� �
¼ 1

p!τ j

t−ρ j

τ j

 !p

e− t−ρ jð Þ=τ jδ t−ρ j

� �
; δ t−ρ j

� �
¼ 1 if t−ρ j≥0

0 otherwise

�
ð3Þ

where α tuned the amplitude, τj and ρj tuned the response width and
the onset time respectively, and β determined the ratio of the re-
sponse to undershoot. The coefficient p was set to 5 following the
nominative values reported in Glover (1999). In order to simulate
the HR due to two different stimuli and with shapes, amplitudes
and latencies in agreement with previous findings regarding finger
tapping tasks, two utrue profiles were generated by properly tuning
the parameters in Eq. (2), allowing small variations in peak amplitude
and latency between a trial and another. For HbO, this led to a first HR
profile with a peak amplitude of 420±20 nM and a peak latency
equal to 5.0±.2 s, while the second HR profile had a peak amplitude
of 360±20 nM and a peak latency equal to 5.5±.2 s. The first profile
was associated with Condition 1, the second with Condition 2. Note
that HR amplitude was lower than that of physiological components
(≈400 nM vs ≈2000 nM). 40 stimuli for each condition were simu-
lated, with an ISI ranging between 12 and 15 s. The simulated HR utrue
in Eq. (2) was added (k=1) in channels 1, 4, 5 for Condition 1, and in
channels 6, 9, 10 for Condition 2. In channels 2, 3, 7, 8 the amplitudes
of the added HRs were halved (k=.5). In the other channels no HR
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was added (k=0). Thus, there were 3 channels with full HR and 2
channels with halved HR in the left hemisphere for Condition 1 and
the same in the right hemisphere for Condition 2.

Physiological noise φsim(t) in Eq. (1) can be considered to be addi-
tive andmodeled as a linear combination of sinusoids (Abdelnour and
Huppert, 2009):

ϕsim tð Þ ¼
X5
j¼1

Aj sin 2π f jt
� �h i

: ð4Þ

Frequency fj and amplitude Aj of each sinusoid varied in the chan-
nel, and were different between participants. They are reported in
Table 1.

Random noise η(t) in Eq. (1) was modeled as a normal white noise
process with standard deviation tuned to be close to that of real data.
The measurement noise was different between participants and be-
tween channels (400 nM±180 nM). In order to simulate artifacts
(e.g., due to movements of the participant or shifts of a source or a
detector) short non-cyclic abrupt drifts were added in 6 out of 30 par-
ticipants (it is the typical fraction noticed in our experiment), at a
random temporal position and with random amplitude, and is repre-
sented by the noise term r(t), different channel by channel.

HbR channels were generated in the same way. According to our
real data, for each component in Eq. (1), the sign was changed, a
delay of 1 s was added, and all the amplitudes, except that of random
noise, were reduced to 25%.

A representative example of the simulated signals is reported in
Fig. 2b, which also shows the true HR (utrue) which has been added
in the synthetic signal. Note that real (Fig. 2a) and simulated
(Fig. 2b) signals are dominated by physiological components and
that their amplitude is greater than that of the true HR.

Reference-channel modeling corrected Bayesian approach (ReMCoBA)

The proposed method consists of two main steps: (in the section
“Step 1: reference-channel modeling and fNIRS data correction”) a
model of the physiological noise is derived by the reference-channel
and used to correct raw fNIRS data of the other channels; (in the sec-
tion “Step 2: single trial Bayesian filtering and HR estimation”) the
resulting data are then filtered, on a single-trial basis, with a nonpara-
metric Bayesian approach to reduce residual random noise.

A prototype of the whole algorithm described in this section was
implemented in Matlab© (version R2010a, The Mathworks, Natick,
Massachusetts, USA) and run on a personal computer.

Raw data time-series of standard and reference-channels were
first band-pass filtered (Butterworth, 4th order, band-pass .01–
3 Hz) to remove any very slow drift and noise with frequency far
from that of the HR. The signal was segmented in 12 second trials
and underwent the two step procedure.

Step 1: reference-channel modeling and fNIRS data correction
The fNIRS signal y(t) acquired by standard-channels after a stimu-

lus given at t=0 contained as useful component u(t) the event-
Table 1
Physiological components.

Frequency (Hz) Amplitude (nM)

Very low freq. f1=.002±.0001 A1=700±100
Low freq. f2=.01±.001 A2=700±100
Vasomotor f3=.07±.04 A3=400±10
Respiratory f4=.2±.03 A4=200±10
Cardiac f5=1.1±.1 A5=400±10

Mean and standard deviation of frequency and amplitude of each physiological
component.
related HR, a physiological noise component φ(t) and random noise
υ(t):

y tð Þ ¼ u tð Þ þ ϕ tð Þ þ υ tð Þ: ð5Þ

An fNIRS reference-channel signal yref(t) contained, by hypothesis,
the same physiological noise φ(t) of standard-channels scaled by a
coefficient s (constant in time) which took into account the different
paths crossed by photons and random noise ε(t):

yref tð Þ ¼ ϕ tð Þ=sþ ε tð Þ: ð6Þ

Thus, the idea was to exploit the signal yref(t) to remove, or at least
reduce, the physiological noise φ(t), which was present also in the
standard-channels y(t). This was feasible only if yref(t) and y(t) had
a good correlation, otherwise there was the risk of adding more
noise instead of reducing it. For this reason, Step 1 was performed
only if the total Pearson's correlation coefficient between the two
channels (y and yref) was above .6; otherwise, Step 1 was skipped
and the algorithmwent directly to Step 2 (in the section “Step 2: single
trial Bayesian filtering and HR estimation”). In order to maximize the
usefulness of the reference-channel, for each standard-channel, the
reference-channel chosen between the available ones was the one
with the highest Pearson's correlation coefficient.

Physiological noise was modeled as a sum of M sinusoidal waves
(similarly to Prince et al., 2003), on a trial-by-trial basis:

ϕ tð Þ ¼
XM
i¼1

ai sin 2πωitð Þ þ bi cos 2πωitð Þ½ �þcþw tð Þ ð7Þ

wherew(t) was the model error. For each trial, the numberM and the
value ωi of the dominant low frequencies (b .18 Hz) were individuat-
ed from the power spectrum. In the procedure of Step 1 the maxi-
mum value allowed to M was 3, since we had seen that this was the
maximum value of dominant low frequencies that could be detected
in real data (corresponding to respiratory frequency, Mayer's and
very low-frequency oscillations). Unlike Prince et al. (2003) where
the number of sinusoidal waves was fixed at 3, M was kept variable
among the trials, given that oscillatory components were not always
detectable with a sufficient accuracy during the entire recording ses-
sion. This yielded a reduction of the number of parameters (e.g. in
data in the “Real data” section, M will result to be 1 in 19% of trials,
2 in 59%, and 3 in 22%). Even if 5 components have been used in the
simulation of physiological noise, we were interested in modeling
only the 3 low frequency components, which lie in the same frequen-
cy band of HR. The initial value of the frequencies ωi obtained from
the spectrum was then optimized through a grid search method
(Handel, 2000). In Eq. (7), the parameters ai, bi and c were estimated
by the least-squares method. Having an estimate of φ, the scaling
coefficient s in Eq. (6) was determined by minimizing the squared dif-
ference between the reference-signal yref(t) and the standard-channel
signal y(t) observed in 30 s of resting state data acquired before each
experimental session (so as to compensate for possible differences in
the magnitude of the path-length factor between reference and
standard-channels). Having provided the estimates of all unknown
parameters (denoted by the hat symbol) in Eqs. (6) and (7), the
corresponding trial of the standard-channels was so corrected:

yc tð Þ ¼ y tð Þ−bs �X
i¼1

bM bai sin 2πbωit
� �þ bbi cos 2πbωit

� �h i
þbc: ð8Þ

The resulting corrected signal yc(t) was then submitted to Step 2.
The procedure of the present subsection produced a result which

may resemble that of a notch filter. However, this is not completely
equivalent to what a notch filter would do on a data-stream. In fact,
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a notch filter would unavoidably introduce a distortion on the HR
because of the superimposition of the spectral content of the HR
with that of the physiological noise components.

Step 2: single trial Bayesian filtering and HR estimation
The signal was filtered with a Bayesian approach developed and

tested on fNIRS data in Scarpa et al. (2010), to which we refer the
reader for details. Briefly, data yc(t) of each standard-channel were
described as:

yc tð Þ ¼ u tð Þ þ v tð Þ ð9Þ

where u(t) was the useful component and v(t) was noise. Trial by
trial, the signal yc(t) was filtered within a Bayesian embedding by
exploiting a priori expectation on both HR and noise. Re-expressing
Eq. (9) in vector form, we got:

yc ¼ uþ v ð10Þ

where u and v were vectors containing the n samples of the trial. A
stationary autoregressive (AR) model was employed as a priori de-
scription of v (different for each of the N available trials of each
condition). In order to keep the number of parameters as low as pos-
sible, model order was determined by using the Akaike information
criterion (AIC). On 80% of the trials, the most parsimonious model
order was 4. This was the value that provided the best estimation
error using the data of our previous work (Scarpa et al., 2010).
Hence, model order was set to 4 and the a priori covariance matrix
of v was:

Σv ¼ σ2 ATA
� �−1 ð11Þ

where A was a square (n-size) Toeplitz matrix the first column of
which was [1,a1, a2, a3, a4, 0,…0]T, {ak}k=1,…,4 being the coefficients
of the AR model, and σ2 was the variance of the noise process which
drives the AR model. For each of the available trials, {ak}k=1,…,4 and
σ2 were identified from data measured in an interval lasting 4 s and
starting from 1.5 s before the stimulus (when HR was not present).
Therefore, A and σ2 in Eq. (11) were determined on a single-trial
basis. As far as the a priori information on u, the strategy was to
model its expected smoothness as the realization of a stochastic pro-
cess obtained by the cascade of 2 integrators driven by a zero-mean
white noise process {εk} with variance λ2. Therefore, the covariance
matrix of u was:

Σu ¼ λ2 FT F
� �−1 ð12Þ

where F=Δ2, with Δ2 being the square n-dimensional lower-
triangular Toeplitz matrix the first column of which was [1, −2, 1,
…, 0]T. While matrix F in Eq. (12) was fixed throughout the N trials,
the scalar λ2 varied on a single-trial basis and was estimated, inde-
pendently trial-by-trial, by the so-called “discrepancy” criterion
(Twomey, 1965). The optimally filtered trial in the sense of mini-
mum variance estimation was thus:

bu ¼ ATAþ γFT F
� �−1

ATAyc ð13Þ

where γ=σ2/λ2.

In order to remove trials irremediably affected by motion artifacts,
for each vector ûj the difference dj between its maximum and mini-
mum was considered:

dj ¼ max buj

� �
−min buj

� �
ð14Þ
Vector characterized by a difference dj greater than the average of
the djs±2.5 SDs had been discarded (≈10%). The estimated HR ūwas
obtained from the average of the N1 trials filtered as in Eq. (13), which
remain after the artifact removal procedure above, belonging to the
same condition:

u ¼
X

j¼1;…;N1
buj

� �
=N1 ð15Þ

To further reduce high frequency residual oscillations and facilitate
later peak amplitude and latency determination, ū was then smoothed
with a Savitzky-Golay filter with 3rd polynomial order and frame size
equal to 25 time-points (3 s). Finally, ū was baseline-corrected by
subtracting its mean intensity in the 0–500 ms interval from the onset.

Methods used for comparison

The proposed methodology (ReMCoBA) will be applied in the
“Results” section to simulated and real data, and assessed against
two widely used literature methods briefly described below.

Reference-channel based fNIRS data correction followed by conventional
averaging (rCA)

It is convenient to start from the presentation of a two step meth-
od which first exploits the reference-channel signal to correct fNIRS
data and then resorts to conventional averaging (rCA) (Saager et al.,
2011). This method has been chosen for comparison because it is
the most general and simple method for HR estimation based on
the reference-channel and, like the proposed method, does not
require a model of the unknown stimulus-evoked HR. As in the
section "Reference-channel modeling corrected Bayesian approach
(ReMCoBA)", data were first pre-processed by band-pass filtering
(Butterworth, pass band: from .01 Hz to 1.25 Hz, Zhang et al., 2009).
The upper cutoff frequency was reduced from 3 to 1.25 Hz: such a
choice allowed to take into account the cardiac component facilitating
the correlation analysis made below, while removing higher frequen-
cies which would not be removed by the Bayesian filtering approach
used in ReMCoBA. Then, similarly to what was done in the section
“Step 1: reference-channel modeling and fNIRS data correction”, for
each standard-channel, the reference-channel signal with the highest
correlation was scaled to fit the former signal in a least-squares
sense (Saager andBerger, 2005). If the correlationbetween the reference-
and standard-channel signals was greater than .6, the scaled reference-
channel signal was subtracted from the standard-channel signal,
otherwise no subtractionwas done, for doing so brings with it the poten-
tial of increasing noise consequently (Zhang et al., 2009). The obtained
time-series was then segmented into 12 s trials and those belonging to
the same condition were grouped. Trials with artifacts were discarded
following the same criteria in the section "Step 2: single trial Bayesian fil-
tering and HR estimation". After CA of the trials corresponding to the
same condition, residual high frequency noise was reduced as in the
section "Step 2: single trial Bayesian filtering and HR estimation" by a
Savitzky-Golay's filter with polynomial order equal to 3 and frame-size
equal to 25 time-points (corresponding to 3 s). The HR estimate is finally
obtained after a baseline-correction done with the same strategy in the
section “Step 2: single trial Bayesian filtering and HR estimation”.

Conventional averaging (CA)
The second method entailed the same operations as that in the

section “Reference-channel based fNIRS data correction followed by
conventional averaging (rCA)”, but reference-channels were not
used. For simplicity, it will be referenced to as conventional averaging
(CA). Since differences in the results will be due to the use of the
reference-channel only, the comparison CA vs. rCA can be exploited to
quantitatively demonstrate the benefits of the use of the reference-
channel in HR estimation.
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Results

In this Section, the newmethod (ReMCoBA) and the two literature
methods (rCA and CA) are compared by using simulated and real
data, and defining some objective indexes to quantify accuracy of
HR estimates. For the sake of completeness, in Appendix we report re-
sults, obtained by HR peak amplitudes analyses, on the different acti-
vation in each hemisphere induced by each condition, in line with
previous findings of the literature regarding finger-tapping tasks.

Results on synthetic data

Fig. 3a (left) shows a representative example of synthetically gen-
erated HR (black line) estimated by ReMCoBA (green line), rCA (blue
line) and CA (red line). Qualitatively, the ReMCoBA profile seems
closer to the true profile than the rCA and the CA ones. Also, of note
is that the rCA profile seems more accurate than CA. Similar results
are obtained for all the other synthetic subjects.

In order to quantitatively assess the performance of the three
methods and the impact of the reference-channel, four quantitative
accuracy indexes, EHR, EA, EL and ED were defined as follows. EHR was
a percentage estimation error index, defined as:

EHR ¼ 100⁎ utruef g−uk k2= utruek k2 ð16Þ

where utrue and ū were the true and the estimated HR, respectively.
Indexes EA and EL were used to describe the error in estimating crucial
HR parameters such as peak amplitude and latency and were defined
as:

EA ¼ 100⁎ Atrue−Aj j= Atruej j ð17Þ

EL ¼ 100⁎ Ltrue−Lj j= Ltruej j ð18Þ

where Atrue and Ltrue were the peak amplitude and latency of the true
HR, while A and L were those of the estimated HR. Finally, index ED,
defined as:

ED ¼ 100⁎
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2A þ E2L

q
ð19Þ
Fig 3. Representative examples of the estimated HRs by the proposed method (ReMCoBA)
simulated data (a) the true HR (black line) is also shown.
was used to assess the accuracy in estimating both amplitude and la-
tency at the same time. To quantitatively compare ReMCoBA, rCA and
CA, these four parameters have been computed for each of the 30
simulated participants. The mean value of the 30 participants and
its standard deviation are reported in Figs. 4a, b, c and d. Channels
with full HR (peak amplitude equal to 400 nM) and channel with
halved HR (peak amplitude equal to 200 nM) were kept separately.
Notably, the best EHR was obtained with ReMCoBA. In the case of
entire HR (peak amplitude equal to 400 nM), ReMCoBA reduced the
estimation error by 16.14% and by 50.54% for HbO, and 10.92% and
17.10% for HbR relative to rCA and CA, respectively. In the case of
halved HR (peak amplitude equal to 200 nM), ReMCoBA reduced
the estimation error of 13.20% and 49.44% for HbO and 19.57% and
24.48% for HbR with respect to rCA and CA respectively.

Similarly, ReMCoBA reduced EA, EL, as well as ED. The higher values
of the error in the HbR case were due to its smaller amplitude com-
pared to HbO (it is reduced to 25%); thus, the HR in the acquired sig-
nal had a smaller signal-to-noise ratio (SNR), and its estimation was
consequently more difficult compared with the HbO case. For the
same reason, error indexes had greater values in the case of halved
HR. The best values, for all indexes, obtained by rCA with respect to
CA, underline the benefits provided by the use of the reference-
channel in HR estimation. Values of each index for both HbO and
HbR were submitted to separate repeated measures ANOVAs with
method (ReMCoBA, rCA and CA) and amplitude (full vs. halved) as
within-subject factors. All ANOVAs revealed a main effect of the
method (for details, see Table 2). The performance of the different
methods as measured with the different indexes has been compared
with a series of paired t-tests: statistically significant differences are
indicated by gray (pb .05) and black (pb .01) horizontal lines over
the corresponding bars in Figs. 4a, b, c and d. Remarkably, the
ReMCoBA obtained the best performance for all indexes and condi-
tions, with a significant difference in most cases.

Additional analyses for the simulated data were performed to
quantitatively compare the performance of ReMCoBA with the other
two methods (CA and rCA). The estimation error (EHR), the most im-
portant index among those used in our work since it considers the
difference in the whole profile between true and estimated HR, was
used to objectively compare the methods on a single channel basis.
(green), by rCA (blue) and by CA (red), on simulated data (a) and real data (b). On



Fig 4. Estimation error (EHR) (a), Euclidean distance between estimated and true peak (ED) (b), error on peak amplitude (EA) (c) and peak latency (EL) (d). Means and standard
deviations computed across all simulated participants, Statistical differences between the three methods are indicated by a gray (pb .05) or black (pb .01) horizontal line over
the corresponding bars. Evoked hemodynamic response with peak amplitude equal to 400 nM (full) and 200 nM (halved) are analyzed separately.
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With respect to CA, ReMCoBA improved EHR in 84% of the simulated
channels for HbO, and 70% for HbR. With respect to rCA, ReMCoBA
improved EHR in 58% of the simulated channels for HbO, and 61% for
HbR. Results are reported in Figs. 5 and 6: 300 points should be
displayed (30 subjects each for 10 channels) but for the sake of clarity
each subject is represented by one dot, where this dot is the mean EHR
of all his channels. While the performances of ReMCoBA and CA are
markedly different, with a significant reduction of EHR obtained by
ReMCoBA, the improvement obtained by ReMCoBA with respect to
rCA is clear but less apparent, in line with results shown in Fig. 4a.

A ROC analysis was performed to test the performance of the
methods considered in the present context following the systematic
variation of SNR values (Machado et al., 2011). HRs from all simulated
subjects were split in order to obtain a subset of active HRs with a full
HR amplitude (≈400 nM) and a subset of non-active HRs with HR
true amplitude equal to 0. For HbO, HRs derived by channels 1, 4, 5
Table 2
ANOVAs results on simulated data.

HbO

Method Amplitude Method∗amplitude

F(2,58) P F(1,29) P F(2,58) P

EHR 54.3 b .001 63.8 b .001 23.7 b .001
ED 36.9 b .001 69.3 b .001 7.8 =.001
EA 32.1 b .001 50.2 b .001 5 =.01
EL 6.4 =.003 36 b .001 1.9 =0.159

Results obtained by repeated measures ANOVAs, considering method (ReMCoBA, rCA and C
Euclidean distance between estimated and true peak (ED), error on peak amplitude (EA), er
in Condition 1 and channels 6, 9, 10 in Condition 2 were treated as ac-
tive HRs, whereas HRs derived by channels 6, 9, 10 in Condition 1 and
channels 1, 4, 5 in Condition 2 were treated as non-active HRs. An
analogous subdivision was applied on channels with halved HR
(≈200 nM). In this latter case, for HbO, HRs derived by channels 2
and 3 for Condition 1 and channels 7 and 8 for Condition 2 were treat-
ed as active HRs, and HRs derived by channels 7 and 8 in Condition 1
and channels 2 and 3 in Condition 2 were treated as non-active HRs.
HbR underwent the same procedure. Full and halved HRs led to two
different SNRs, whose values were −17 dB (full HR) and −23 dB
(halved HR) for HbO, and −20 dB (full HR) and −26 dB (halved
HR) for HbR. In order to provide parameters reflecting a substantial
portion of the HR function, and not only of the peak amplitude, an
area subtended by the HR curve in a 4 s interval centered at the
peak's latency was considered. A threshold was set on the value of
the 4 s area to enable the separation of true from false positive
HbR

Method Amplitude Method∗amplitude

F(2,58) p F(1,29) P F(2,58) F(2,58)

15.5 b .001 74.1 b .001 11.5 b .001
19.5 b .001 64.3 b .001 12.8 b .001
11.4 b .001 49.7 b .001 10.8 b .001
26.4 b .001 49.2 b .001 3.1 =.053

A) and amplitude (full vs. halved) as within-subject factors, for estimation error (EHR),
ror on peak latency (EL).



Fig 5. Estimation error (EHR) obtained with CA (horizontal axis) and ReMCoBA (vertical
axis), for HbO (a) and HbR (b). Each dot is the mean EHR obtained from channels rela-
tive to the same simulated subject.

Fig 6. Estimation error (EHR) obtained with rCA (horizontal axis) and ReMCoBA (vertical
axis), for HbO (a) and HbR (b). Each dot is the mean EHR obtained from channels relative
to the same simulated subject.

Table 3
Area under curve (AUC) of ROC curves.

HbO HbR

Full HR Halved HR Full HR Halved HR

ReMCoBA .9777 .8535 .9272 .7780
rCA .9679 .8621 .9052 .7689
CA .9390 .7847 .8934 .7556

Area under curve (AUC) obtained by each method (ReMCoBA, rCA and CA) in the ROC
analysis in case of full HR (≈400 nM) and halved HR (≈200 nM), for HbO and HbR.
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rates. The threshold value was then varied from the greatest area,
where neither true nor false positives were found, to the lowest
area, where the concentration of true and false positives was assumed
to be maximal. A total of four cases were generated for the analyses,
each contributing 200 points. Table 3 reports the values of the area
(AUC) under the curve estimated using the present ROC approach.
The results of the ROC analyses are illustrated in Figs. 7a, b, c and d.
The results from the different methods were compared via a series
of paired two-tailed t-tests on the individual AUC values. Significant
differences were found in HbO (full HR) between ReMCoBA and CA
(t(29)=2.041, p=.05), in HbO (halved HR) between rCA and CA
(t(29)=2.371, pb .05), and between both ReMCoBA and rCA
(t(29)=2.948, pb .05) and ReMCoBA and CA (t(29)=2.916, pb .05)
in HbR (full HR). No other significant difference was detected in the
comparison. In line with the results described in the foregoing sec-
tions, the ROC analyses corroborated the remarkable superior perfor-
mance of ReMCoBA relative to CA. Albeit with slightly less power, the
results of the ROC analyses – and the particularly clear pattern visible
in Fig. 7 – allows us to argue that ReMCoBA performed better than
rCA (and particularly so in the case of HbR, full HR), given the highest
AUC value obtained by ReMCoBA vs. rCA in three out of the four tests.

Additional analyses were performed on the precision of the HR es-
timates provided by ReMCoBA. The number of parameters used by
our method ranges between 10 and 16 (depending on M), if the
reference-channel is used, while it is 5 otherwise. This number is of
the same order of that of previously published methods, e.g. at least
6 parameters in Prince et al. (2003), 8 parameters in Abdelnour and
Huppert, (2009), 16 parameters in Gagnon et al., (2011). A lower
number of parameters would not be able to describe the complexity
of the fNIRS signal shown by the data, resulting in a biased description
of noise and in suboptimal HR estimates. Indeed, our procedure tries
to minimize model complexity by letting the data indicate the most
suited model order. For instance, M in Eq. (8) can be 1, 2 or 3,
depending on the data, while in other methods (e.g. Prince et al.,
2003) M is identically equal to 3 for all the trials (with consequent
risk of overfitting). Similarly, the order 4 for the auto-regressive
model was determined by AIC. In general, an aspect of strength of



Fig 7. ROC curves obtained by ReMCoBA (green), rCA (blue) and CA (red) in the case of (a) HbO, full HR, (b) HbO, halved HR, (c) HbR, full HR and (d) HbR, halved HR. Full HR
(≈400 nM) and halved HR (≈200 nM) denote two different SNR, about −17 dB and −23 dB respectively for HbO, and −20 dB and −26 dB for HbR.
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ReMCoBA is that the values of all the employed parameters are com-
puted by objective and reproducible (even if, sometimes, empirical to
some extent) procedures, the aim being to reduce possible user's sub-
jectivity as much as possible. In order to have a quantification of the
precision of the HR estimates obtained by ReMCoBA, we performed
a Monte Carlo simulation. For each simulated subject, 200 realizations
of the same channel were created, each with a different random noise
sequence (η(t) in Eq. (1)). From each of these 200 realizations, the HR
was estimated. From the sample distribution of the estimates, the av-
erage and the 5th and 95th percentile variability bands were finally
computed. As shown in Figs. 8a,b, the bias was very small. The fact
that the variability band was narrow indicates that the procedure
was not overly sensitive to noise, as it would happen if models were
overfitting the data. In particular, the mean variance of EHR was
equal to 2.3% for HbO and 5.1% for HbR, denoting the good precision
of the estimates obtained by ReMCoBA.

Results on real data

A representative example of the HR obtained in a real subject is
reported in Fig. 3b (right). On this particular dataset, all methods
achieved a reasonable HR estimation. However, differences in peak
amplitude and latency were apparent. Obviously, in the real data
case a quantitative/objective assessment of the three HR estimation
algorithms was more difficult to be done than in the simulated data
case. The following strategy has been considered. First, samples of each
estimated HR were fitted by the canonic mathematical model of the HR,
Eq. (2), by a nonlinear least squares algorithm (initial values of the pa-
rameters, i.e.,α=1202,φ1=.5,φ2=3.5, τ1=τ2=.8 andβ=.6,werede-
rived by an overall average of all real participants and channels). The fit
was then computed on each estimated HR with lower and upper con-
straints on the model's parameters (0≤αb inf, −1.5bφ1b1.5,
2.5bφ2b5.5, .5bτib .9 and 0bβb .7). The constraints on amplitude (α)
and time delay (φi) were set to take into account the possible variability
between participants and channels, and, in order to obtain a good fit,
only if the estimated HR had a reasonable physiological shape
(Figs. 9a,b). Stringent constraints were set, instead, to the parame-
ters (τi) which tuned the shape of the HR and to the amplitude of
the undershoot (β). The coefficients of the fit (R2, rmse) were used
to have a grasp of the “likelihood” of the estimated HR.

For each index, a mean value was obtained by each of the 10 real
participants. For each method, the mean value of the 10 participants
and its standard deviation are reported in Figs. 10a,b. All methods
achieved good results on the Pearson's correlation coefficient (R2),
≈ .9 and ≈ .8 for HbO and HbR respectively. Values were submitted to
a repeated measures ANOVA, considering method as within-subject



Fig 8. Monte Carlo estimate: true HR (black line), estimated mean (green line)
obtained by 200 realizations of a channel with different random noise, 5th and 95th
percentiles (dotted green line), for HbO (a) and for HbR (b).

Fig 9. Representative examples of canonic mathematical model of the hemodynamic
response (dashed line) fitted to estimated HR (solid line). On the left (a), the model
cannot properly fit the estimated HR because of the presence of an unrealistic under-
shoot, whose amplitude is greater to that of the peak, probably due to the presence
of physiological noise not yet removed by the signal processing method (R2=.96,
rmse=44). On the right (b), the estimated HR has a reasonable physiological shape
and it is well described by the canonic model (R2=.99, rmse=15).
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factor, for both HbO and HbR. ANOVAs revealed a significant effect of
the method (Table 4). Hence, a paired t-test was conducted between
methods. Statistical differences between the threemethods are indicat-
ed by gray (pb .05) and black (pb .01) horizontal lines over the corre-
sponding bars in Figs. 10a,b. The proposed method achieved the best
R2, with a significant difference with respect to CA for HbO, and to rCA
and CA for HbR. The same analyses were conducted on the root mean
square error (rmse) and the new methodology achieved the lowest
rmse, with a significant difference (pb .05) with respect to rCA and CA,
for both HbO and HbR. Again, the best values, for both R2 and rmse,
obtained by rCAwith respect to that obtained by CA, underline the ben-
efits provided by the use of the reference-channel in HR estimation.

Discussion

The fNIRS is an emerging neuroimaging technique which can be
usefully employed to provide, in a non-invasive way and with reason-
able laboratory costs, useful information for the study of cerebral
activity. Unfortunately, in the event-related design used in the study
of cognitive processes, the estimation of HR from fNIRS signals
is especially challenging due to its small amplitude with respect
to that of the other ongoing physiological components. In the present
paper, a methodology to improve the estimation of HR from fNIRS
signals has been presented. The new reference-channel modeling
corrected Bayesian approach (ReMCoBA) is a two-step method
with no assumption on HR shape, duration, amplitude and latency,
nor on the kind of experiment and stimulus. In the first step,
ReMCoBA takes advantage from the availability of noise-only data, the
so-called reference-channel signal, which allows a massive reduction
of physiological noise (due to respiration, vasomotor waves, etc.)
disturbing HR estimation from standard-channels. In Step 1, in
fact, the reference-channel signal is used to estimate a parametric
model of physiological noise, which is in turn used to correct the sig-
nal recorded from standard-channels. The model derived from
the reference-signal describes low frequency physiological compo-
nents, so as to remove from standard-signal only these components,
without the risk of propagating noise from reference-channel to
standard-channel. To perform Step 1, a good correlation between
reference and standard-channel is necessary, otherwise physiological
noise may be amplified instead of reduced. Indeed, in the present
work only 32% of standard-channels have a Pearson's correlation coeffi-
cientwith at least oneof the reference-channels greater than .6: thema-
jority of the channels skips data correction and goes directly to Step 2.
The setting of a threshold to a high value of the Pearson's correlation
coefficient is crucial, because if the physiological model subtracted
from a standard-channel is derived by a not sufficiently correlated
reference-channel, the obtained HR estimate gets worse instead of
improving. This can be seen in Figs. 11a,b, which show the percentage
difference of the estimation error obtained with and without the
use of the reference-channel in relation to the Pearson's correlation co-
efficient during the resting period. In agreement with Zhang et al.
(2009), data in Figs. 11a,b suggest a correlation coefficient threshold
of approximately 0.6: when the correlation coefficient is lower than
0.6, the obtained estimation error increases in 50% of channels and
in some cases it drastically increases (three and even four times) with
respect to the estimation error obtained without the use of the
reference-channel.



Fig 10. a,b. Pearson's correlation coefficients (R2) and root mean square error (rmse)
between estimated hemodynamic responses and the canonic model of the hemody-
namic response. Means and standard deviations are computed across all real partici-
pants. Statistical differences between the three methods are indicated by a gray
(pb .05) or black (pb .01) horizontal line over the corresponding bars. Fig 11. Percentage difference of the estimation error obtained with and without the use

of the reference-channel (ΔEHR=100∗(EHRwith−EHRwithout)/EHRwithout) in relation to
the Pearson's correlation coefficient during the resting period (from 0.3 to 1), for
HbO (a) and for HbR (b). Red lines represent the second order polynomial fit.
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Step 2 embeds a non-parametric (i.e., no assumptions on shape,
amplitude and latency) Bayesian approach which is able to individu-
ate, on a trial-by-trial basis, a suitable compromise betweenmeasured
noisy data and a priori expectations on HR smoothness. The procedure
in Step 2 is in large part that already presented in Scarpa et al. (2010).
Step 1 and 2 take into account the complexity of fNIRS signal, letting
the data indicate the most suited model order and parameter values.

The newReMCoBAmethodwas assessed on both simulated and real
data against two other literature methods. For simulated data, several
quantitative accuracy indexes could be obtained. The comparison of
ReMCoBA and rCA, a method which subtracts a scaled version of the
reference-signal from standard-channels, reveals a significant improve-
ment in HR estimation (with a statistically significant difference for all
accuracy indexes detectable in simulated data). A CA methodology
Table 4
ANOVAs results on real data.

HbO HbR

F(2,18) P F(2,18) p

R2 4.0 =.036 14.5 b .001
rmse 5.9 =.011 6.6 =.007

Results obtained by repeated measures ANOVAs, considering method (ReMCoBA, rCA
and CA) as within-subject factor, for the Pearson's correlation coefficients (R2), the
root mean square error (rmse) between estimated hemodynamic responses and the
canonic model of the hemodynamic response.
that does not use the reference-channel was also used as a comparative
method, in order to further validate the use of the reference-channel.
The fact that CA leads to the worst HR estimates supports the impor-
tance of the reference-channel. The superior performance of ReMCoBA
over the other two methods was confirmed by the results of ROC anal-
yses considering full and halved HR in each cell of the present design
and for each subject estimated based on both HbO and HbR concentra-
tion indices. Notably, as regards real data, we used a finger tapping task
instead of using a more sophisticated paradigm, because we wanted to
obtain a known HR. In this way, we provide an ideal platform to com-
pare the performance of the three methods straightforwardly.

Given that the total number of channels available in NIRS devices is
typically limited, the use of only two reference-channels for hemisphere
is an important advantage of the proposed method with respect to
other reference-channel based methods (Gagnon et al., 2011, Zhang et
al., 2009). There is ample evidence in the literature that low frequency
physiological fluctuations are highly correlated across space, with some
relatively constant time delay across time (Cooper et al., 2011; Frederick
et al., 2012; Tong & Frederick, 2010; Tong et al., 2011). Even if
the Pearson's correlation coefficient between reference and standard-
channel is generally greater if they are close to each other (b2 cm)
(Gagnon et al., 2012), we found good correlation (>.6) also between



Fig 12. Mean values of the peak amplitude obtained for each condition (movement of the right or left forefinger for Condition 1 and Condition 2 respectively) and hemisphere (left
or right) by the three methods (Condition 1 is represented by a solid line, Condition 2 is represented by a dashed line). Mean values are computed across all simulated participants.
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distant channels, even from those located in different hemispheres: the
model of physiological components is derived by the reference-channel
with the greatest correlation coefficient with the considered standard-
channel, and 45% of the selected reference-channel is located in
the opposite hemisphere. However, just because their number is
limited, it is important to maximize the SNR of the signal acquired by
reference-channels, so special attention must be paid on their location
(in order to minimize the distance from standard-channels) and on a
perfect contact between optic fibers and the participant's skin.

Furthermore, the distance between source and detector of each
reference-channelmust be less than 1 cm, in order tomeasure the signal
relative to scalp and skull only. If the distance is greater than 1 cm, part
of the acquired signal is relative to the cerebral cortex and may contain
the stimulus-evoked hemodynamic response. The probe arrangement
used for the placement of our sources and detectors provides, besides
the 10 standard-channels and the 4 reference-channels so far men-
tioned, 4 additional channels (sources 1 and 2 with detector C on the
left hemisphere and sources 1 and 2 with detector D on the right hemi-
sphere) (Fig. 1)with a source-detector distance equal to 1.5 cm. TheHRs
estimated by these channels are comparable with those of standard-
channels (peak amplitude ≈200 nM). Thus, they probably contain
also some cerebral signal. Since they cannot be used as reference-
channels nor as normal-channels, they have been discarded from analysis.

Simulated and real data onwhich the newmethodhas been tested on
comprised two conditions, each consisting in the repetition of an identi-
cal stimulus. In order to find out the minimum number of repetitions
(trials) needed to obtain a good HR, we estimated HR using 30, 40
(so far discussed), 50 trials andwe evaluated the corresponding estima-
tion error on simulated data. No significant difference was found in the
estimation of the event-related hemodynamic response between 40
and 50 trials (for HbO, EHR was equal to 12.2% and 10.2% respectively;
for HbR, EHRwas equal to 31.9% and 21.7% respectively), but a significant-
ly greater estimation error was found in the 30 trial case (EHR was equal
Table 5
ANOVAs results on simulated data.

HbO

Hemisphere Condition Hemisphere∗condit

F(1,29) P F(1,29) P F(1,29) p

ReMCoBA 16.3 b .001 2.6 =.115 3155.6 b .
rCA 15.2 =.001 3.7 =.065 1914.6 b .
CA 9.7 =.004 1.5 =.234 1039.3 b .

Results obtained by repeated measures ANOVAs, with condition (right- vs. left-hand tappin
The mean peak amplitude of every participant obtained grouping channels by hemisphere
to 18.6% for HbO and 43.8% for HbR). Thus, when the signal is dominated
by physiological components, a minimum number of 40 trials seems to
be mandatory for a correct estimation of HR in an event-related design.

In conclusion, the proposed method based on a model derived by the
reference-channel provides a valuable estimation of the stimulus-evoked
hemodynamic response, without a priori information about its shape, du-
ration, amplitude, latency and no model of the unknown hemodynamic
response is required. These featuresmake the proposedmethod a general
and flexible way to correctly estimate evoked hemodynamic response.
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Appendix A

Investigation of differences between hemispheres and conditions

In order to demonstrate the effectiveness of the used methodolo-
gies, hemodynamic responses estimated by the proposed method
(ReMCoBA) and by the methods used for comparison (rCA and CA)
were analyzed to confirm with each method previous findings
known by literature regarding finger tapping tasks. The standard in-
vestigation of fNIRS data consists in the analysis of HR's peak ampli-
tudes. Note that, on simulated data, the whole HRs and in particular
their peak amplitudes and peak latencies were created just according
to information known by literature. Since we were not interested in
the HR obtained by each single channel but in differences between
conditions and hemispheres, all channels of the same hemisphere
were grouped, while the two conditions have been kept separate.
HbR

ion Hemisphere Condition Hemisphere∗condition

F(1,29) p F(1,29) p F(1,29) p

001 10.2 =.003 .712 .406 841.8 b .001
001 11.2 =.002 4.1 .053 892.0 b .001
001 10.7 =.003 4.8 .036 818.8 b .001

g) and hemisphere (left vs. right) as within-subjects factors, for ReMCoBA, rCA and CA.
and condition was considered.



Fig 13. Mean values of the peak amplitude obtained for each condition (movement of the right or left forefinger for Condition 1 and Condition 2 respectively) and hemisphere (left
or right) by the three methods (Condition 1 is represented by a solid line, Condition 2 is represented by a dashed line). Mean values are computed across all real participants.
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Then, peak amplitudes of each channel in both conditions have
been analyzed in order to find significant differences between hemi-
spheres and conditions. The mean peak amplitude of every partici-
pant obtained grouping channels by hemisphere and condition
(e.g. mean value of the channels of the right hemisphere in Condition 1)
was considered. The values obtained with the three methods (reported
in Fig. 12) have been separately submitted to a repeated measures
ANOVA, with condition (right- vs. left-hand tapping) and hemisphere
(left vs. right) as within-subject factors. Although all the ANOVAs
revealed a significant interaction between hemisphere and condition
for all methods (Table 5), the HRs estimated with the proposed method
were the closest to the real values (336 nM for Condition 1 in the left
hemisphere and 288 nM for Condition 2 in the right hemisphere for
HbO, and −88 nM for Condition 1 in the left hemisphere and −72 nM
for Condition 2 in the right hemisphere for HbR).

In order to find significant differences between hemispheres and
conditions, the same analyses conducted on simulated data have
been replicated on real data, analyzing peak amplitudes of each chan-
nel and condition. Similarly to simulated data, the mean values for
each condition and hemisphere obtained with the three methods
are reported in Fig. 13. As in simulated data, they were submitted to
repeated measures ANOVAs, with hemisphere and condition as
within-subject factors. For each method, ANOVAs revealed a signifi-
cant (Table 6) interaction between hemisphere and condition. In
real data, hemodynamic activity was observed both contralaterally
and ipsilaterally to the moved forefinger. Anyway, as expected, the
amplitude of the HRs was greater in the contralateral hemisphere,
without reaching significance, though. Instead, a significant difference
between hemispheres was found on simulated data, but (unlike real
data) HR was added contralaterally only. Equivalent outcomes are
found for HbR. All the results obtained in real data are in line with
previous findings concerning finger tapping protocols (Franceschini
Table 6
ANOVAs results on real data.

HbO

Hemisphere Condition Hemisphere∗conditi

F(1,29) p F(1,29) P F(1,29) p

ReMCoBA .804 =.393 .194 =.67 6.3 =.0
rCA .033 =.86 .289 =.604 16.5 =.0
CA .003 =.955 .584 =.464 16.8 =.0

Results obtained by repeated measures ANOVAs, with condition (right- vs. left-hand tappin
(ReMCoBA), rCA and CA. The mean peak amplitude of every participant obtained grouping
et al., 2006; Holper et al., 2009; Leff et al., 2011; Lutz et al., 2005;
Sato et al., 2007).
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