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Abstract 

The present study investigates whether predictions during language comprehension are 

generated by engaging the production system. Previous studies investigating either 

prediction or production highlighted M/EEG desynchronization (power decrease) in the 

alpha (8-10 Hz) and beta (13-30 Hz) frequency bands preceding the target. However, it 

is unclear whether this electrophysiological modulation underlies common mechanisms. 

We recorded EEG from participants performing both a comprehension and a production 

task in two separate blocks. Participants listened to high and low constraint incomplete 

sentences and were asked either to name a picture to complete it (production) or to simply 

listen to the final word (comprehension). We found that in a silent gap before the final 

stimulus, predictable stimuli elicited alpha and beta desynchronization in both tasks, 

signaling the pre-activation of linguistic information. Source estimation highlighted the 

involvement of left-lateralized language areas and temporo-parietal areas in the right 

hemisphere. Furthermore, correlations between the desynchronizations in comprehension 

and production showed spatiotemporal commonalities in language-relevant areas of the 

left hemisphere. As proposed by prediction-by-production models, our results suggest 

that comprehenders engage the production system while predicting upcoming words. 

 

Keywords: language prediction, language production, alpha–beta oscillations, internal 

model 
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1. Introduction 

 

Top-down prediction of upcoming stimuli has been proposed as a prominent feature of 

human cognition in order to optimize processing (Clark, 2013; de Lange, Heilbron, and 

Kok, 2018; Friston, 2005). This has been put forward also for language comprehension, 

whereby sentential and contextual information guide the pre-activation of linguistic 

representations before the stimuli are actually encountered, thus facilitating subsequent 

elaboration (Federmeier, 2007; Kuperberg & Jaeger, 2016). Prediction has been 

investigated by employing different paradigms and techniques (see e.g. reading and eye-

tracking: Staub, 2015 for a review; visual world paradigm: Huettig, Rommers, & Meyer, 

2011 for a review; event-related potentials (ERPs): Nicenboim, Vasishth, & Rösler, 2020 

for a meta-analysis; Nieuwland et al., 2020 for a large-scale study; Van Petten & Luka, 

2012 for a review). Despite the general agreement on the importance of prediction in 

language comprehension, what are the linguistic representations involved, the underlying 

mechanisms and their neural underpinnings is still largely unknown (Huettig, 2015). In 

the present study we investigated the hypothesis that prediction is implemented by 

engaging the language production system. To do so, we compared how the same person 

predicted an upcoming target word during comprehension and how they prepared to 

produce it. In order to tap into such processes, we analyzed the EEG oscillatory activity 

immediately before the presentation or the production of the target words in contexts in 

which they were either predictable or not. We anticipate that the results revealed large 

commonalities between the two modalities. 

 

1.1 Prediction-by-production 

 

Traditionally, language comprehension and production have been independently 

investigated. However, recent work highlights several commonalities in the 

representations, processes and the underlying neural circuitry (AbdulSabur et al., 2014; 

Dell & Chang, 2014; Okada & Hickok, 2006; Gambi & Pickering, 2017; Pickering & 

Garrod, 2014; Silbert, Honey, Simony, Poeppel, & Hasson, 2014). In particular, it has 

been proposed that prediction during comprehension is implemented through processes 

traditionally attributed to language production (Huettig, 2015; Pickering & Gambi, 2018; 
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Pickering & Garrod, 2013). The proposals in the literature, however, are not entirely in 

agreement regarding which processes and representations are involved. 

Pickering and Garrod (2013) [P&G2013] envisaged language production and 

comprehension as a form of action and action perception, respectively. In studies of action 

control, internal forward models are used to predict sensory consequences and future 

states (Wolpert, 1997; Wolpert & Flanagan, 2001). Similarly, P&G2013 proposed that 

forward models are used not only to predict the speaker’s own speech during production 

(Hickok, 2012; Hickok, Houde & Rong 2011), but also to predict others’ speech during 

comprehension (prediction-by-simulation). In their view, forward models are 

“impoverished” representations and are extended to all the linguistic hierarchy 

(semantics, syntax and phonology), allowing for the rapid generation of predictions 

without engaging fully-fledged production representations. 

According to Huettig (2015), prediction is based on the interaction between 

multiple mechanisms activated during comprehension (i.e. PACS: production-, 

association-, combinatorial-, simulation-based prediction). Comprehenders make use of 

fully-fledged production representations that can be pre-activated through simple 

associative learning (priming) and through active event simulation. The activation of 

linguistic representations is further constrained by combinatorial mechanisms sensitive to 

different linguistic levels. Critically, these mechanisms are shared between 

comprehension and production. 

More recently, Pickering and Gambi (2018) [P&G2018] more explicitly 

differentiated processes related to prediction-by-association (PA) and to prediction by 

production (PP). PA is based on the spreading of activation among linguistic levels and 

it can be equated to semantic/phonological priming. PP is very effective but slow and, 

since it requires cognitive resources, it is optional. During prediction, comprehenders do 

not necessarily need to go through all the stages of word production and, according to the 

specific circumstances, they might predict semantic and syntactic features but not the 

phonology of upcoming words. On the other hand, PA is automatic and mandatory, but 

less effective. It leads to the pre-activation of all representations that are semantically and 

phonologically connected, independently of their relevance to the context, which is taken 

into consideration only in PP.  
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Summing up, all three proposals assume an important role of priming and event 

simulation, although for P&G2013 and P&G2018 simulation is part and parcel of the act 

of production, while in the PACS model it is a separate mechanism interacting with 

production; P&G2013 ascribe a prominent role to impoverished representations in the 

form of forward models, while both the PACS model and P&G2018 propose that 

prediction is based on the implementation of fully-fledged production representations. 

 Direct experimental evidence on production-based accounts of prediction is still 

relatively scarce. In order to determine to what extent prediction involves production 

representations, some ERP studies focused on the N400 effect during sentence reading 

by comparing the time-course of effects associated to prediction of meaning and 

prediction of form (Ito, Corley, Pickering, Martin, & Nieuwland, 2016; Ito, Gambi, 

Pickering, Fuellenbach, & Husband, 2020). These studies highlighted differences in the 

latencies of the effects depending on the kind of information predicted. The timing of the 

effects was suggestive of the steps envisaged by serial models of word production, 

whereby form is encoded after meaning (Levelt, Roelofs, & Meyer, 1999; Indefrey, 

2011), and they have been considered congruent with the hypothesis that production 

representations are prominently involved in prediction. Similarly, experiments on sign 

language (Hosemann, Herrmann, Steinbach, Bornkessel-Schlesewsky, & Schlesewsky, 

2013) showed that, during sign comprehension, mismatch-related N400 effects are 

elicited well before the target sign is fully articulated, signaling that predictions included 

the trajectory leading from one sign to the other in a modality-specific manner. The 

authors attribute these modality-specific predictions to forward models, thus supporting 

a version of production-based accounts of predictions. Further evidence is provided by 

Martin, Branzi, and Bar (2018), who showed that taxing the speech production system in 

a secondary task while reading the beginning of the sentence (silent syllable production) 

led to reduced N400 responses at the article preceding the unexpected noun, while other 

secondary tasks (tongue tapping, listening to syllables) did not. Interesting evidence 

comes also from developmental studies highlighting the relevance of production 

competence for the development of predictive abilities. In this respect, by using the visual 

world paradigm, Mani and Huettig (2012) showed that predictive abilities in 2-year old 

children were correlated with their production vocabulary size (number of words they 
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were able to produce according to their parents) but not with the comprehension 

vocabulary size (number of words that they could only comprehend). 

 In conclusion, experimental evidence suggests that even though production and 

comprehension do not fully overlap, they may interact in more complex ways than 

previously thought. 

 

1.2 Neural oscillations in language prediction and production 

 

Differently from ERPs that allow to retain information that is both time- and phase-locked 

to the onset of a stimulus, time-frequency analysis of the electroencephalographic (EEG) 

signal enables to observe also the modulation unfolding over time of non-phase-locked 

oscillatory activity at specific frequency bands (Bastiaansen, Mazaheri, & Jensen, 2012). 

The literature on neural oscillations in language comprehension and production has 

recently revealed oscillatory correlates (for reviews, see Meyer, 2018, and Prystauka & 

Lewis, 2019, for comprehension; Piai & Zheng, 2019, for production). 

 With respect to the prediction processes, the literature is still largely developing. 

Lewis and Bastiaansen (2015) and Lewis, Wang and Bastiaansen (2015) proposed that 

oscillations in the beta band (13-30 Hz) could reflect the maintenance/change of the 

sentence-level representation and the top-down propagation of predictions, whereas 

oscillations in the gamma band could reflect the matching of predicted and encountered 

information (low and middle gamma, 30-50 Hz) and the propagation of prediction error 

(high gamma, 50-100 Hz). This proposal has been put forward on the basis of a large 

body of literature on sentence processing employing violations, in which oscillatory 

modulations are observed after the presentation of a target stimulus that either disrupts or 

not the ongoing meaning or grammatical structure processing. In this case, power 

decreases in the beta range and power increase in the gamma range are reported (see 

Prystauka & Lewis, 2019, for a review). The pattern has been interpreted in line with the 

general framework proposed by Engel and Fries (2010) on the role of beta oscillations. 

Beta power increase (reflecting neural synchronization) would signal the maintenance of 

the current cognitive set, while power decrease or suppression (reflecting neural 

desynchronization) would signal that the cognitive set is changing or bound to change. 

The gamma oscillatory pattern has been interpreted in line with the general framework 
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proposed by Herrmann, Munk, and Engels (2004). Power increase in this band would 

reflect the matching of the encountered target stimulus with previously activated memory 

representations.  

 Predictive and anticipatory processes have also been investigated using a different 

approach, in which oscillatory modulations are observed prior to the presentation of a 

target stimulus that is either predictable or not on the basis of the preceding sentence 

content. Studies implementing this paradigm consistently showed a desynchronization in 

the beta (but also alpha) range prior to predictable targets (see Table 1). The pattern has 

been interpreted as reflecting top-down pre-activation of upcoming information. These 

studies employed the written modality, with words presented one at a time for fixed 

durations. While most studies employed high and low constraining sentences (Rommers, 

Dickson, Norton, Wlotko, & Federmeier, 2017; Wang, Hagoort, & Jensen, 2018), 

Terporten, Schoffelen, Dai, Hagoort, & Kösem (2019) studied the oscillatory activity pre- 

and post-target and the evoked response post-target (M/N400) while reading low, medium 

and high constraining sentences. The results showed alpha and beta desynchronization 

before target onset. Interestingly, the oscillatory data showed a non-monotonic relation 

with constraint level (i.e. the strongest desynchronization was elicited by the medium 

constraint, followed by the high and then the low constraint). The authors argued that pre-

target power modulations reflected working memory demands for target pre-selection. 

These were maximal for the condition of intermediate levels of constraint, in which the 

pool of activated lexical candidates is larger than in the high constrain condition, in which 

only one candidate is activated. In other studies, however, maintenance in working 

memory has been more often associated to alpha–beta synchronization (see Weiss & 

Mueller, 2012; Meyer, 2018; Piai, Roelofs, Rommers, Dahlslätt, & Maris, 2015). 

Moreover, as can be seen in Table 1, effects in oscillatory activity have been detected 

only in partially overlapping cortical areas across studies. Given these inconsistencies in 

the results, it is still largely unclear what are the processes associated to alpha–beta 

desynchronization. In fact, it has been shown that the beta band is implicated in a variety 

of processes, even within the domain of language itself. In their review on the roles of the 

beta band in language processing, Weiss and Mueller (2012) show that different features 

of this frequency range (i.e. power, phase) are modulated by multiple aspects (i.e. motor 

planning, action semantics, working memory, information binding, and – as later 
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elaborated on by Lewis and collaborators – change/maintenance of the current state). 

Additionally, different sub-bands within the beta range (e.g. beta1: 13-18 Hz; beta2: 19-

25 Hz; beta3: 26-30 Hz) may even reflect different processes. Overall, the beta band likely 

underlies multiple mechanisms, possibly also in overlapping frequencies. 

The relevance of the beta band in speech/language production is more 

straightforward, given its clear and well-documented involvement in motor and action 

control, as previously mentioned (see Kilavik, Zaepffel, Brovelli, MacKay, & Riehle, 

2013, for a review). This holds true also for sensorimotor aspects of speech planning and 

execution. In particular, it has been shown that sensorimotor alpha and beta power 

decreases prior to articulation (reaching maximal suppression during articulation), while 

it increases (beta rebound) after utterance completion. Notably, the desynchronization 

prior to articulation has been linked to the generation of sensory predictions for speech 

monitoring (see Saltuklaroglu et al., 2018, for a review). In a series of studies aiming at 

probing linguistic and motor aspects of word production, Piai and collaborators focused 

on alpha and beta pre-target modulations by employing context-induced picture naming 

tasks. In these paradigms, the sentential context preceding the presentation of the target 

picture either allows or not for predicting the name of the target picture, and therefore 

plan the appropriate response. Time-frequency analyses of the interval preceding the 

target revealed alpha–beta desynchronization before predictable pictures (see Table 1). 

The interpretation of these effects as reflecting activation of linguistic information for 

word production planning is supported by behavioral results showing faster responses to 

predictable targets. An open question is what kind of processes and representations are 

reflected in the alpha–beta desynchronization found in this kind of production task. Piai, 

Roelofs, Rommers, and Maris (2015) dissociated the memory- and motor-related 

components by comparing pre-target beta and alpha desynchronization in two different 

tasks. In one case the task required to name the picture that followed a constraining or 

non–constraining sentence frame, in the other case participants were asked to judge 

whether the picture was predictable or not by pressing a key with their left hand. Results 

showed alpha–beta desynchronization in different areas, depending on the task. The 

activity in the left temporal areas and in ventral premotor areas observed during picture 

naming was associated to word retrieval and speech motor programming. The activity in 

left posterior temporal and inferior parietal areas and in the right motor area observed 
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during the categorization task were associated to conceptual processing and manual 

response preparation. In Piai, Klaus and Rossetto (2020), auditory distractors were 

introduced before picture onset. Alpha–beta desynchronization was delayed when the 

distractors were semantically related to the target picture with respect to unrelated 

distractors, suggesting that these power modulations are sensitive to lexico-semantic 

processing. Along the same lines, Piai, Rommers and Knight (2018) showed that aphasic 

patients with concomitant left temporal and inferior parietal lesions did not benefit from 

constraining contexts in terms of response times and did not display the characteristic 

alpha–beta desynchronization, while patients with left frontal and left temporal (but not 

inferior parietal) lesions did. According to the authors, this pattern suggests that the 

desynchronization in the alpha and beta bands elicited in context-induced word 

production is functionally associated to core semantic memory and lexical retrieval. 

Whether later stages of word planning (e.g. phonological encoding) are captured and 

reflected in these modulations in this paradigm remains unanswered. 

 

Task Study Technique Frequencies 
Time-

window 
Scalp distribution Cortical sources 

C
O

M
P

R
E

H
E

N
S

IO
N

 

Rommers 

et al. 

(2017) 

EEG 

alpha (7-12 Hz) 

and beta (16-24 

Hz) 

-500, 0 ms 

Alpha: stronger over 

occipital and central 

electrodes 

Beta: stronger over left 

posterior and anterior 

electrodes 

- 

Wang et 

al. (2018) 
MEG 

alpha (8-12 H) 

and beta (16-20 

Hz) 

-550, -250 

ms 

Alpha: left anterior, 

central and posterior 

Beta: left centro-

posterior 

Alpha: left inferior frontal 

cortex, left posterior 

temporal cortex (including 

visual word form area, 

VWFA), left hippocampus, 

and right cerebellum 

Beta: left posterior temporal 

cortex 

Terporten 

et al. 

(2019) 

MEG 

alpha (8-12 Hz) 

and beta (16-20 

Hz) 

-540, 0 ms 

Alpha: frontal and 

posterior, stronger in the 

right hemisphere 

Beta: frontal, stronger in 

the right hemisphere 

Alpha: parietal regions with 

a bias to the right 

hemisphere 

Beta: left and right frontal 

and parietal regions 

P
R

O

D
U

C

T
IO

N
 

Piai et al. 

(2014) 
EEG 

alpha–beta 

(6-30 Hz) 

-400, 200 

ms 

Left frontal, central and 

posterior 
- 
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Piai et al. 

(2015b) 
MEG 

alpha–beta 

(4-25 Hz) 

Average 

modulation 

-800, 0 ms 

Left frontal, central and 

posterior 

Left anterior and posterior 

temporal areas, bilateral 

ventral premotor areas 

Piai et al. 

(2018) 
EEG 

alpha–beta 

(8-25 Hz) 
-300, 0 ms 

Group average in 

aphasic patients: bilateral 

frontal and left posterior 

(see reference for 

details). 

- 

Piai et al. 

(2020) 
EEG 

alpha–beta 

(5-20 Hz) 
-350, 0 ms Posterior sensors - 

Table 1: Summary of the studies on neural oscillations pre-target in prediction during 

comprehension and in context-induced word production. All these studies report 

desynchronization in the frequency bands and time-windows specified in the table. (EEG: 

electroencephalography, MEG: magnetoencephalography) 

 

The oscillatory activity in the beta band reported both in prediction during 

comprehension and in production has led to the hypothesis of a common mechanism 

shared by the two processes (Molinaro, Monsalve, & Lizarazu, 2016). Until now, 

however, no study has directly compared the oscillatory alpha–beta activity in the two 

domains. Indirect support pointing towards common mechanisms comes from Pérez, 

Carreiras, and Duñabeitia (2017) who performed an experiment with hyperscanning 

where the EEG activity was registered while two participants interacted in a conversation. 

The results showed that alpha and beta oscillations of the speaker and the listener were 

temporally synchronized, and the authors interpreted this alignment as reflecting 

coordination between speaker and listener and predictive processing. 

 

1.3 The present study 

 

In order to directly compare how linguistic information is anticipated in comprehension 

and in production, we implemented a within-subject design in which the same participant 

engaged in both modalities. More precisely, we used both the cloze probability 

comprehension task and the context-induced picture naming task in two separated blocks, 

and focused on the alpha and beta oscillatory activity in an interval immediately preceding 

the relevant target. Participants listened to sentence frames which could either constrain 

or not towards a target word (see Table 2). After a silent pause of 800 ms, they either 
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listened to the target word or they completed the sentence by naming the target picture. 

Time-frequency analyses focused on the silent interval between the sentence frame and 

the target. The structure of the paradigm allowed to directly compare the effects elicited 

by the same stimuli in the two tasks. In the constraining condition participants could 

anticipate the target word before hearing it or seeing the corresponding picture. 

Importantly, in the production task this means that participants can already plan the 

response before the picture is displayed. Therefore, measuring oscillatory activity before 

picture presentation allowed us to tap into processes associated to word production 

planning. The comparison with word prediction during comprehension in the same time 

interval would highlight the extent to which the two tasks share common mechanisms. 

To our knowledge, this is the first study allowing for such direct comparison. In 

fact, as previously mentioned, shared mechanisms have been proposed in the literature on 

the bases of similar oscillatory patterns in separate studies investigating either prediction 

during comprehension or production. In addition, the present study made use of 

naturalistic auditory stimuli, contrary to most of the previous studies which employed the 

written modality in an artificial (word-by-word) fashion. 

Following the literature, we expect to replicate the pre-target predictability effects 

of alpha and beta desynchronization in both comprehension and production. If prediction 

and production share some common mechanisms, we should observe temporal overlaps 

of alpha–beta modulations between the two tasks in language-relevant areas of the left 

hemisphere. 

 

2. Materials and methods 

 

2.1 Participants 

 

Forty participants were recruited on a voluntary basis (11 males; mean age = 23.7, sd = 

4.84). Sample size was determined before data collection. Given the 2×2 (task × list) 

design of the experiment (see below), we aimed at collecting 10 participants for each 

combination. All participants were right-handed native speakers of Italian (handedness 

evaluated by means of an Italian translation of the Edinburgh Handedness Questionnaire, 

Oldfield, 1971; mean laterality index = 86, sd = 15.28). None of them reported a history 
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of neurological, language-related or psychiatric disorders. All participants signed an 

informed consent to participate in the experiment. The study was approved by the Ethical 

Committee for the Psychological Research of the University of Padova (protocol n. 2920). 

 

2.2 Stimuli 

 

One hundred twenty-eight concrete, animate and inanimate nouns were selected and 

paired with a black-and-white line picture (240 x 240 pixels) representing the word 

referent. For each picture, a scrambled version was also created, in such a way that the 

referent was not recognizable. For each target noun, two sentence frames were 

constructed: one whose semantic content leads to the target word with a high probability 

(high constraint; HC) and one for which the target word is not particularly likely but is 

still plausible given the sentential content (low constraint; LC, see Table 2). This resulted 

in 256 sentences in total (128 HC, 128 LC). Sentence frames associated to the same target 

were matched for number of syllables, had a similar syntactic structure, and had the same 

article or preposition as final word. The constraint was modeled as the cloze probability 

(CP) of the target word given the frame, assessed with an online sentence completion 

questionnaire involving 71 respondents, none of whom took part in the subsequent 

experiment, who were asked to complete each sentence frame with the word they 

considered most appropriate (HC sentences: mean CP = 0.873, sd = 0.092; LC sentences: 

mean CP = 0.052, sd = 0.078). Subsequently, all sentence frames and target words were 

recorded from a female native speaker in a quiet room using a microphone connected to 

a PC using Audacity (sampling rate of 44.1 KHz). Frames and targets were recorded 

separately. The speaker was instructed to keep the reading pace as steady as possible and 

to keep a constant distance from the microphone. Recordings were then appropriately 

trimmed at the beginning and at the end using Audacity. The approximate number of 

syllables per second for each sentence frame, assuming a constant pace, was estimated as 

the number of syllables of the sentence divided by the length of each audio file. 

Target words and their associated sentence frames were then divided into two lists, 

A and B, each containing 64 target words and the associated 128 sentence frames (64 HC 

and 64 LC). The two lists were matched for lexical frequency (log-scaled; obtained from 

COLFIS, Bertinetto et al., 2005), number of phonemes and number of syllables (obtained 
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from PhonIta 1.10, Goslin, Galluzzi, & Romani, 2014), number of syllables per second, 

audio file duration, both across conditions and within conditions. The difference of CP 

was not significant between lists, and it was significant between conditions, both in the 

whole set and within each list (see Table 3 for stimuli matching). This ensures that each 

list elicits comparable levels of high and low constraint. 

 

Task Condition Sentence frame Target Trials 

COMPREHENSION 

 

HC 
Il contadino munge una… 

‘The farmer milks a…’ mucca 

‘cow’ 

64 

LC 
Il bambino disegna una… 

‘The child draws a…’ 
64 

PRODUCTION 

 

HC 
Il calciatore colpiva la… 

‘The soccer player kicked the…’ 

 

64 

LC 
Il bambino voleva la… 

‘The child wanted the…’ 
64 

Table 2: Examples of stimuli used in the experiments. 

 

 LISTS 

 Mean (sd) List A Mean (sd) List B t-value df p-value 

Lexical frequency (log-scaled) 3.776 (1.252) 3.849 (1.305) -0.46 235.56 0.6476 

No. phonemes (word) 6.063 (1.701) 6.281 (1.631) -1.05 253.55 0.2947 

No. syllables (word) 2.578 (0.728) 2.672 (0.641) -1.09 250.06 0.2751 

No. syllables (sentence frame) 10.680 (2.012) 10.672 (2.248) 0.03 251.07 0.9766 

Audio length (sec) (sentence 

frame) 

2.388 (0.397) 2.381 (0.414) 0.15 253.54 0.8851 

No. syllables/sec (sentence 

frame) 

4.482 (0.485) 4.480 (0.523) 0.05 252.52 0.9643 

Cloze probability overall 0.456 (0.421) 0.468 (0.421) -0.23 245 0.8215 

Cloze probability HC 0.868 (0.094) 0.878 (0.09) -0.62 125.84 0.5351 

Cloze probability LC 0.045 (0.068) 0.058 (0.086) -1 119.69 0.3193 

 CONDITIONS 

 Mean (sd) HC Mean (sd) LC t-value df p-value 

No. syllables (sentence frame) 10.750 (2.074) 10.602 (2.182) 0.56 253.34 0.5774 

Audio length (sec) (sentence 

frame) 

2.413 (0.407) 2.356 (0.402) 1.12 253.97 0.2629 

No. syllables/sec 4.459 (0.441) 4.504 (0.56) -0.71 240.87 0.4758 

Cloze probability overall 0.873 (0.092) 0.052 (0.077) 77.47 246.66 <0.001 

Cloze probability List A 0.868 (0.094) 0.045 (0.068) 56.96 114.71 <0.001 

Cloze probability List B 0.878 (0.09) 0.058 (0.086) 52.69 125.62 <0.001 
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Table 3: Variables controlled across lists and conditions (Welch’s t-tests). Means and 

standard deviations (in parenthesis) are reported. HC: high constraint, LC: low constraint. 

 

2.3 Procedure 

 

Participants were seated in a comfortable chair in a soundproof room with a computer 

connected to a CRT monitor, built-in speakers, a keyboard and a microphone to record 

responses. Stimuli were presented with E-Prime 2.0 (Psychology Software Tools, 

Pittsburgh, PA). Each participant performed the comprehension task and the production 

task in a blocked design. The structure of the trials in the two tasks is shown in Figure 1. 

After a silent interval of 800 ms, a sentence frame was played through the computer 

speakers, and it was followed by a second silent gap of 800 ms. Throughout this phase 

the fixation cross remained on the screen. Afterwards, the target was presented. In the 

comprehension task, the auditory target word was presented together with a visual 

stimulus, which was constructed by scrambling the picture corresponding to the target in 

such a way that the referent was not recognizable. In the production task, the visual 

stimulus was the picture of the target word. Pictures were presented for 2 seconds. In the 

comprehension task, participants were instructed to listen carefully to the sentence. 

Following preceding literature (e.g. Terporten et al., 2019; Wang et al., 2018), to ensure 

that participants paid attention to the sentence, 26 trials (20%) included a statement about 

the preceding sentence appearing as written text after the target for 2 seconds. Participants 

were asked to judge whether it was true or false by providing a vocal response. In the 

production task, participants were instructed to name the picture as fast and as accurately 

as possible. 
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Figure 1: Trial structure in the comprehension (top) and the production (bottom) tasks. 

 

 For each participant, list A or B was associated to one of the tasks (e.g. list A for 

comprehension and list B for production). Task order and the lists associated to the tasks 

were counterbalanced across participants, resulting in a 2×2 design (2 lists × 2 tasks). 

Trial order presentation was pseudo-randomized for each participant by using Mix (van 

Casteren & Davis, 2006) in such a way that the minimum number of trials between the 

first and the second presentation of the same target word was seven, and no more than 

three consecutive trials belonged to the same condition. The inter-trial interval varied 

from trial to trial (1, 1.2 and 1.5 seconds). After every 32 trials participants could take a 

short break. Responses were recorded through the microphone, positioned at a fixed 

distance from the participant (~50 cm). During the experimental session participants were 

instructed to minimize eye movements, blinks and facial muscle activity during the 

presentation of the stimuli. Before each task, a training session of 8 trials (not included in 

the experimental session) was used to familiarize the participant. Each task lasted 

approximately 20 minutes. 

 

2.4 Response coding and production RT analyses 

 

For the comprehension task, true/false responses were coded as correct or incorrect. Trials 

with incorrect responses were excluded from the EEG analyses. If error rate for a given 

participant was above 25%, the participant was excluded from further analysis of the EEG 

signal in both tasks. 

In the production task, audio recording started at the onset of the picture and lasted 

for 2 sec. Responses were manually coded as incorrect when participants: 1) failed to 

provide an answer, 2) produced hesitation sounds, 3) started producing a word but then 

produced another word, 4) produced the correct target word before recording onset. Trials 

with incorrect responses were excluded from the EEG analyses. Response onset was 

measured from each audio recording using Chronset (Roux, Armstrong, & Carreiras, 

2017). In case Chronset returned some NA values, the correspondent audio waveforms 

were inspected manually with Audacity in order to determine the response onset. The set 

of correct responses was then analyzed using R (R Core Team, 2014). 
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RTs were analyzed by means of linear mixed-effects models (Baayen, Davidson, 

& Bates, 2008) using the lme4 package (Bates, Mächler, Bolker, & Walker, 2015), with 

random intercept for participant and target word. The lmerTest package (Kuznetsova, 

Brockhoff, & Christensen, 2017) was used to estimate the p-values for model parameters. 

First, a null model including random effects only was computed, and in each subsequent 

model a predictor or an interaction between predictors was added. An ANOVA between 

models was then performed, and the best-fit model was selected considering AIC (Akaike 

Information Criterion) and BIC (Bayesian Information Criterion) as indices of fit and the 

p-value of the test between models. 

 

2.5 EEG data acquisition and pre-processing 

 

Electroencephalogram was recorded with a system of 64 active Ag/AgCl electrodes 

(Brain Products), placed according to the 10–20 convention (ActiCap). Sixty of them 

were used as active electrodes (Fp1, Fp2, AF3, AF4, AF7, AF8, F1, F2, F3, F4, F5, F6, 

F7, F8, Fz, FT7, FT8, F1, F2, F3, F4, F5, F6, Fz, FC1, FC2, FC3, FC4, FC5, FC6, T7, 

T8, C1, C2, C3, C4, C5, C6, Cz, TP7, TP8, CP, CP2, CP3, CP4, CP5, CP6, CPz, P1, P2, 

P3, P4, P5, P6, P7, P8, PO3, PO4, PO7, PO8, PO9, PO10 POz, O1, O2, Oz). Reference 

was placed at the left earlobe. Three electrodes were used to record blinks and saccades 

(external canthi and below the left eye). Electrode impedance was kept below 10 kΩ 

throughout the experiment. The signal was amplified and digitized at a sampling rate of 

1000 Hz. Before the tasks, a resting state of 5 minutes was recorded, which is not analyzed 

further here. Each task was recorded separately. As a result, 3 recordings were obtained 

for each participant (resting state, production, comprehension). 

Pre-processing and analyses were performed using the MATLAB toolbox 

Brainstorm (Tadel, Baillet, Mosher, Pantazis, & Leahy, 2011; Tadel et al. 2019), which 

is documented and freely available for download online under the GNU general public 

license. A high-pass filter at 0.5 Hz with 60 dB attenuation was applied to the raw data. 

Noisy or flat channels were marked as ‘bad’ and excluded (max 2 channels marked as 

‘bad’ per participant). No interpolation of bad channels was performed. Segments with 

extreme muscle artifacts were marked as ‘bad’. Subsequently, Independent Component 

Analyses (ICA) with 60 components was computed to detect and remove artifact 
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components with known time-series and topographies (blinks, saccades, and power-line 

noise at 50 Hz).1 Markers for incorrect responses were manually added to the continuous 

EEG recording according to the off-line evaluation of the audio files. Finally, 3-second 

epochs (from -1.5 to 1.5 s) were imported around two event markers: (1) the onset of the 

trial (fixation cross), and (2) the onset of the 800 ms gap pre-target. The epochs in (1) 

were not divided into conditions and constitute the condition-average baseline for the 

event-related synchronization / desynchronization (baselinecomp and baselineprod). This 

ensures a higher signal-to-noise ratio given the higher number of trials included as 

baseline, and therefore a better estimate of the relative power change (Cohen, 2014). The 

epochs in (2) were divided into HC and LC conditions (HCcomp, LCcomp, HCprod and 

LCprod). All epochs were visually inspected, and those with artifacts (uncorrected 

blinks/saccades, muscle activity, channel drifts, transient electrode displacements) were 

rejected. All trials in (2) which included a marker of incorrect response were rejected. 

 

2.6 Time-frequency decomposition and statistical analyses (sensor-level) 

 

In the time-frequency (TF) decomposition, power was computed by using Morlet 

wavelets. According to Morlet wavelet implementation in Brainstorm software, wavelets 

were built starting from a mother wavelet with central frequency = 1 and FWHM = 3 (7-

cycle wavelets), and then generating new wavelets spanning from 5 Hz to 30 Hz with step 

1 Hz.2 TF maps were obtained for each trial for all conditions (baselinecomp, HCcomp, 

LCcomp, baselineprod, HCprod, LCprod). Due to the large windows for epoching (3 seconds), 

edge effects at the selected frequencies did not involve the windows of interest. 

Subsequently, TF maps were averaged within each condition for each participant.  

Event-related synchronization/desynchronization (ERS/ERD) was used as 

normalization method.3 For each participant, the average TF map of the two conditions 

                                                           
1 If any channels were marked as ‘bad’, the number of components for the ICA was reduced to the number 

of good channels. 

2 The delta band (0.1-4 Hz) was excluded because the wavelets at these frequencies were too large and 

temporal smearing introduced noise in the production task (HC condition) due to muscle activity after the 

gap of interest. 

3 𝐸𝑅𝑆/𝐸𝑅𝐷𝑡 =  (𝑃𝑜𝑤𝑒𝑟𝑡 −  𝑃𝑜𝑤𝑒𝑟𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ )   𝑃𝑜𝑤𝑒𝑟𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅⁄  × 100 
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were normalized against the mean computed over the interval [-550 -250] ms of the 

average baseline TF map (baselinecomp for HCcomp and LCcomp; baselineprod for HCprod and 

LCprod). This yielded the %-change of power over time relative to the baseline for each 

frequency. 

After having obtained the normalized TF map for each participant, non-parametric 

cluster-based permutation tests were performed for each task on the 800 ms pre-target 

gap (Maris & Oostenveld, 2007). The critical α level was set to 0.05, the minimum 

number of neighboring channels set to 2, and the number of Monte Carlo simulations for 

the permutations to 1000. Based on previous research, we formulated a specific 

directional hypothesis for the contrast between HC and LC conditions. Specifically, our 

alternative hypothesis was that HC conditions elicited reduced power compared to LC 

conditions. To ensure consistency between research hypotheses and statistical hypotheses 

(Cho & Abe, 2013; Harrington, 2020) we employed cluster-corrected one-tailed paired t-

tests when contrasting the conditions within each task. In absence of any directional 

hypothesis, to examine the interaction between constraint and task (production vs. 

comprehension), a cluster-corrected two-tailed paired t-test was performed between the 

differentials (HC–LC) of the two tasks. From now on we refer to the difference between 

HC and LC in each task as Δcomp and Δprod, and to the statistical contrast between them as 

interaction. 

 

2.7 Time-frequency decomposition and statistical analyses (source-level) 

 

To estimate EEG activity at source level we implemented the following steps. First, a 

noise covariance matrix for each task was computed from the baseline epochs in the time-

window [-550 -250] ms. OpenMEEG BEM (Boundary Element Method) with 8002 

vertices was used as forward solution4 (Gramfort, Papadopoulo, Olivi, & Clerc, 2010) 

with ICBM152 as template anatomy. This method models three realistic layers (scalp, 

inner and outer skull) in addition to the cortical surface; for this reason, it is recommended 

for EEG data, given the differential electrical propagation through the types of tissue. 

Minimum Norm Imaging (NMI) normalization with sLORETA (Standardized Low 

                                                           
4 For the other layers (scalp, inner and outer skull) Brainstorm defaults settings were kept. 
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Resolution Brain Electromagnetic Tomography; Pascual-Marqui, Michel, & Lehmann, 

1994) was used as inverse solution. The dipole orientation was unconstrained, to obtain 

a better estimation in lack of individual anatomy scans.5 Time-frequency decomposition 

was performed on each epoch, averaged and normalized against the baseline as for the 

TF at sensor level. Following practices adopted in previous studies (e.g. Piai et al., 2015b; 

Wang et al., 2018), TF maps were then averaged across frequencies based on sensor-level 

results. Specifically, we identified four frequency ranges: alpha (8-12 Hz), beta1 (13-19 

Hz), beta2 (20-25 Hz) and beta3 (26-30 Hz). This subdivision allowed to reduce the 

computational burden while preserving the widespread modulations that contributed to 

the effects in the two tasks. Incidentally, these ranges nicely overlap with a possible 

subdivision suggested by Weiss and Mueller (2012). Subsequently, ERS/ERD maps were 

downsampled at 150 Hz, to further reduce the computational burden. Cluster-based 

permutation tests for effects of condition in each task (one-tailed paired t-tests) and their 

interaction (two-tailed paired t-tests) on source-space TF data were performed as 

described for sensor-level testing.  

 

2.8 Between-task source-level correlations 

 

Pearson correlations between Δcomp and Δprod at the source level were performed. This 

provides an estimate of putative shared cortical generators of the desynchronizations in 

prediction during comprehension and in word planning in production. Correlations were 

computed separately for the alpha band (8-12 Hz) and the three beta sub-bands (13-19, 

20-25 and 26-30 Hz) on Δ%-power change averaged in intervals of 200 ms (0-200, 200-

400, 400-600 and 600-800 ms), resulting in 16 correlation maps. For each vertex of the 

cortex model, two vectors of values were correlated. Each vector contained 36 values, 

one for each participant, representing the average Δ%-power change at a given frequency 

band and time-window in the two tasks. We decided to average in time because it is likely 

that cortical modulations underlying possible shared processes are not temporally aligned 

across the two tasks due to different demands influencing participants’ performance. In 

this way we can capture desynchronizations at the same vertex that are slightly shifted in 

                                                           
5 The other settings were kept at Brainstorm default settings (Noise covariance regularization: 0.1; 

Signal-to-noise ratio: 3). 
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time. For each frequency band, correlations were thresholded for p < 0.05 and minimum 

size = 50 (number of connected vertices), in order to exclude not only statistically non-

significant correlations, but also statistically significant but spatially isolated and likely 

meaningless correlations. In other words, only significant correlations that are spatially 

connected on a relatively extended area of the cortex model have been displayed and 

considered. Given the exploratory nature of these analyses and the fact that many factors 

can hinder the possibility to detect commonalities between the tasks (e.g. variability in 

the timing of the processes under study, inter- and intra-subject variability, spatial 

inaccuracy of the technique), we opted for this spatial criterion for identifying significant 

correlations without adopting a multiple comparisons correction approach. Then, 

correlation maps were inspected, and the intervals with the strongest and more spatially 

extended correlations were identified. To provide a clearer summary of the results, we 

performed additional correlations on the averages of the identified time-windows. For 

this additional analysis we only focused on the positive correlations. 

 

3. Results 

 

3.1 Word production response times 

  

Response accuracy was very high (98.5%). Only 84 responses were coded as incorrect, 

59 in the LC condition and 25 in the HC condition. Error rates were not analyzed. Figure 

2 shows response times of correct trials divided by condition. 
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Figure 2: Violin plot of the response times of correct trials in the production task for the 

HC and the LC conditions. HC: mean = 507 ms, sd = 184.786; LC: mean = 698 ms, sd = 

172.22. 

 

Latencies of correct responses were fitted to mixed-effects models; Table 4 

shows the results of the ANOVA between models. The model which best explained the 

data is M4, which included Repetition, Condition, Lexical frequency and the interaction 

Condition × Lexical Frequency as fixed effects. 

 

Model Effects Df AIC BIC X2 p-value 

M0 Random effects (R.E.) 4 66966 66992   

M1 R.E. + Repetition 5 66705 66737 263.22 < 0.001 

M2 R.E. + Repetition + Condition 6 64857 64897 1849.1 < 0.001 

M3 R.E. + Repetition + Condition + Lexical 

Frequency 

7 64858 64904 1.134 0.287 

M4 R.E. + Repetition + Condition + Lexical 

Frequency + Condition × Lexical 

Frequency 

8 64851 64903 9.195 0.002 

M5 R.E. + Repetition + Condition + Lexical 

Frequency + Condition × Lexical 

Frequency + Condition × Repetition 

9 64852 64911 1.231 0.267 

Table 4: Statistics of model selection. 
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The model showed a main effect of Repetition (estimate = -85.023, t = -20.74, p 

< 0.001, 95% CI: -93.06 – -76.987) – with estimated faster responses at the second 

presentation of the same target picture – and of Condition (estimate = 232.085, t = 17.871, 

p < 0.001, 95% CI: 206.626 – 257.543) – with estimated faster responses in the HC 

relative to LC condition. There was no main effect of Lexical Frequency (p = 0.962), but 

there was an interaction between Frequency and Condition (estimate = -9.78, t = -3.034, 

p < 0.01, 95% CI: -16.1 – -3.46): the effect of Lexical Frequency was present in the LC 

condition, with decreasing RTs when lexical frequency increases. Table 5 shows all the 

parameter estimates of the model. 

 

Parameter Estimate SE df t-value p-value 95% CIs 

Intercept 548.022 22.158 188.58 24.733 < 0.001  [504.375 – 591.676] 

Repetition -85.023 4.1 4870.027 -20.740 < 0.001  [-93.06 – -76.987] 

Condition 232.085 12.987 4870.745 17.871 < 0.001  [206.626 – 257.543] 

Lexical Frequency 0.222 4.604 162.17 0.048 0.962 [-8.854 – 9.302] 

Condition × Lexical 

Frequency 
-9.78 3.224 4870.594 -3.034 0.002 [-16.1 – -3.46] 

Table 5: Parameter estimates of model M4. 

 

3.2 Sensor-level time-frequency analysis  

 

The data of two participants were excluded from all subsequent EEG analyses due to an 

excess of trials coded as incorrect in the comprehension task (34.6% and 53.9%). Another 

two participants were excluded due to excessively noisy EEG recordings. The mean 

percentage of epochs retained are the following: baselinecomp: 88.8%, HCcomp: 89.7%, 

LCcomp: 87.5%, baselineprod: 87.7%, HCprod: 89.3%, LCprod: 89.7%. 

The cluster-based permutation tests contrasting HC vs LC conditions in the two 

tasks were significant. In the comprehension task, the effect was associated to a negative 

cluster (p = 0.003, t-sum = -324052, size = 134070; Figure 3a). In the production task, 

the effect was associated to a negative cluster (p = 0.001, t-sum = -946882, size = 361719; 

Figure 3b). This suggests that high target predictability elicited desynchronization before 
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its presentation, be it an auditory word or a picture to name overtly. The effects were 

widespread across all sensors and appeared to span the entire alpha and beta ranges, with 

variability of modulations across the gap. The analysis testing for the interaction did not 

yield significant results (all clusters p > 0.05; see Supplementary Material). 
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Figure 3: Time-frequency maps averaged across groups of sensors for the comprehension 

(a) and the production (b) tasks. The averaging is only for visualization purposes; 

statistical testing was performed on all electrodes. Each column represents a group of 

sensors, specified on the scalp model above. The rows represent the average TF maps of 

the HC condition, the LC condition, the HC-LC differential (Δcomp/prod), and the t-values 

of the statistical contrast (t-maps are masked for values associated to the significant 

cluster). 

 

3.3 Source-level time-frequency analysis 

 

Source-level contrasts identified two significant negative clusters in the comprehension 

task (cluster 1, left hemisphere: p = 0.02597, t-sum = -742975, size = 326126; cluster 2, 

right hemisphere: p = 0.04995, t-sum = -645503, size = 280809) and two negative clusters 

in the production task (cluster 1, left hemisphere: p = 0.001, t-sum = -1820707, size = 

719067; cluster 2, right hemisphere: p = 0.002, t-sum = -1405540, size = 562307). The 

interaction analysis did not yield significant results (all clusters p > 0.05; see 

Supplementary Material). Results are shown in Figure 4a and Figure 4b. 

In comprehension, alpha desynchronization was stronger towards the end of the 

gap and involved the bilateral frontal and temporal cortex; early in the gap it involved the 

left posterior temporal cortex. Beta desynchronization was found in the temporal (beta1) 

and inferior frontal (beta1, beta2, beta3) cortices of the left hemisphere, and in temporo-

parietal-occipital areas (beta1, beta2, beta3) of the right hemisphere. In production, alpha 

desynchronization involved the bilateral prefrontal, temporal and inferior parietal 

cortices, with a bias in the right hemisphere. Beta desynchronization involved various 

cortical areas, including the temporal, parietal and frontal cortex in the left hemisphere, 

and the parietal cortex in the right hemisphere. 
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Figure 4: Summary of the statistical contrasts between HC and LC conditions in the 

comprehension (a) and production (b) tasks. Selected cortical maps of t-values are shown 

for each of the frequency bands (α: 8-12 Hz; β1: 13-19 Hz; β2: 20-25 Hz; β3: 26-30 Hz) 

in averaged time-windows determined from inspecting the time-course of the results. For 

each map, the time-window used for averaging is indicated by the red line below each 

plot (comprehension: α: 0-100, 500-800 ms; β1: 300-400, 400-800 ms; β2: 400-600 ms; 

β3: 400-700 ms; production: α: 0-600 ms; β1: 0-200, 200-600 ms; β2: 250-350; 500-800 
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ms; β3: 500-800 ms). Averaging is for visualization purposes only; analyses were 

performed on all timepoints after downsampling. Only t-values ranging from -1 to -4 and 

part of a significant cluster are shown. Complete results are provided in the 

Supplementary Material. 

 

3.4 Source-level correlations  

 

Figure 5 shows positive correlations between Δcomp and Δprod as defined in the Method 

section (complete correlation maps are reported in the Supplementary Material). The 

areas highlighted include the left temporal cortex, the inferior frontal cortex, motor and 

supplementary motor cortices, the left insula, and the left inferior parietal cortex. 

 

 

Figure 5: Positive correlations between Δcomp and Δprod at the source level at each 

frequency band. The timeline at the bottom represents the 800 ms silent interval between 

sentence frame and target; the red lines below each cortical map represent the time-

window of the correlation displayed above it (α: 400-800 ms; β1: 200-600 ms; β2: 200-

400 ms; β3: 0-400 ms). 

 

4. Discussion 
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We employed a within-subject design in order to directly compare alpha and beta 

oscillatory modulations elicited by predictive processes in comprehension and production 

by manipulating cloze probability. We found alpha and beta desynchronization in HC 

relative to LC conditions preceding the target stimulus. The cortical sources appeared to 

be left frontal, temporal and inferior parietal, involving areas traditionally associated to 

language processing, but also right parietal and temporo-parietal areas. Positive 

correlations between Δcomp and Δprod were found in the left temporal, frontal, and inferior 

parietal cortices. 

In the following paragraphs we will discuss: 1) the desynchronizations in the left 

hemisphere in relation to language-specific and domain-general processing; 2) the 

desynchronizations in the right hemisphere; 3) how these results are compatible with 

production-based accounts of prediction; 4) limitations of the present study and future 

developments and directions. 

 

4.1 Alpha–beta desynchronization in the left-lateralized language areas as index 

of predictive information retrieval and encoding 

 

In both tasks, HC contexts induce desynchronization of the alpha and beta bands relative 

to LC contexts. We interpret the desynchronization as marker of pre-activation of 

linguistic information, both in predicting during comprehension and in planning for word 

production. 

In the comprehension task, language-relevant areas are engaged in actively 

updating the sentence-level representation in a top-down fashion. In the HC condition the 

preceding context allows for the generation of strong predictions about the upcoming 

word. The information retrieved from long-term memory in this case is rich and specific. 

This predictive process is reflected in the desynchronization of oscillatory activity in the 

alpha and beta band observed in language-relevant areas (left temporal and left inferior 

frontal areas). 

In the production task, the HC condition leads to faster naming latencies with 

respect to the LC condition. Moreover, the effect of lexical frequency was found in the 

LC but not in the HC context (replicating previous studies, Griffin & Bock, 1998; Piai et 

al., 2014, 2018). The pattern clearly signals that lexical retrieval in the HC condition 
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occurs before picture onset, and the alpha–beta desynchronization effect observed before 

picture presentation reflects the retrieval of specific lexical information, and possibly 

other stages of word planning. Consistent with this hypothesis, Youssofzadeh et al. (2020) 

showed MEG beta (17-25 Hz) desynchronization in language-related areas of the left 

hemisphere in picture naming and auditory description naming, more specifically in a 600 

ms time-window ending 100 ms before response onset. The authors interpreted these 

modulations as reflecting later stages of word production, such as phonological planning 

and motor speech preparation. 

These conclusions are compatible with the ‘information by desynchronization’ 

hypothesis put forward by Hanslmayr, Staudigl, and Fellner (2012). According to this 

study, information encoding and retrieval is associated with desynchronized firing of 

neural populations in the alpha and beta frequencies. By applying mathematical modeling, 

the authors showed that the power of local field potentials at these frequencies (and 

consequently of the scalp-level EEG fluctuations) is negatively related to the richness of 

information represented in the brain. The stronger the desynchronization of neural 

populations, the stronger the decrease in alpha–beta power, and the richer the information 

encoded or retrieved. In agreement with this conclusion, previous research reported a 

power decrease in the alpha‒beta range associated to the processing of open vs. closed 

class words (Bastiaansen, Van Der Linden, Ter Keurs, Dijkstra, & Hagoort, 2005) and to 

deep vs. shallow semantic encoding of words (Hanslmayr, Spitzer, & Bäum, 2009). These 

effects seem to suggest that the desynchronization of oscillatory activity in these bands 

might be related to the semantic richness of the representation retrieved from memory. 

From this perspective, therefore, our results are in line with studies showing that 

alpha–beta desynchronization is related to prediction in spatial attention (Bauer, Stenner, 

Friston, & Dolan, 2014) and pitch change (Chang, Bosnyak, & Trainor, 2018), in 

successful word memory formation (Griffiths, Mazaheri, Debener, & Hanslmayr, 2016) 

and word encoding (Meeuwissen, Takashima, Fernández, & Jensen, 2011), and fidelity 

of stimulus-specific information tracking in the visual and auditory domains (Griffiths et 

al., 2019). 

Beta desynchronization has been proposed to reflect a change in the cognitive set 

in response to unexpected targets (Lewis & Bastiaansen, 2015; Lewis, Wang & 

Bastiaansen, 2015). However, consistently with literature analyzing oscillations before 
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target onset, we found alpha–beta desynchronization associated with more predictable 

conditions. These results can be reconciled by assuming that desynchronization of the 

alpha and beta band reflects that a change is undergoing or bound to happen, but such 

change would be qualitatively different according to whether it is detected pre- or post-

target. When encountering unexpected or new information, desynchronization is 

associated to a change in the current representation due to bottom-up processing; when 

anticipating new information, desynchronization is associated to a change induced by top-

down pre-activation of upcoming information. This interpretation is in line with other 

studies focusing on pre-target modulations. For instance, Magyari, Bastiaansen, de 

Ruiter, and Levinson (2014), in a turn-taking experiment, asked participants to listen to 

conversations and to press a button precisely when the current turn was going to end, 

encouraging the prediction of the sentence content. The authors found alpha–beta 

desynchronization well before the end of the turn in predictable relative to unpredictable 

contexts, suggesting that lexico-semantic and syntactic information was guiding the 

anticipation of upcoming content, and consequently turn ending. Similarly, Gisladottir, 

Bögels, and Levinson (2018) employed conversations that constrained towards specific 

speech acts. The results highlighted alpha–beta desynchronization before predictable 

relative to less predictable targets, signaling that pragmatic cues enable the prediction of 

future speech acts for faster recognition. 

In conclusion, our findings are in line with previous studies showing alpha–beta 

desynchronization in left-lateralized language areas before target onset, compatible with 

the role of alpha–beta desynchronization in signaling active change in the cognitive set. 

 

4.2 Alpha–beta desynchronization in the right hemisphere 

 

The alpha and beta desynchronization effects we reported involved also the right 

hemisphere. Source analyses showed that the effect extended mainly in the prefrontal and 

anterior temporal corteces (alpha range) and in the occipito-temporo-parietal cortex (beta 

range) in comprehension, and in the temporal, parietal and prefrontal corteces (both alpha 

and beta ranges) in production. Among the studies considered in Table 1, only one found 

effects also in the right hemisphere. Terporten et al. (2019), in a comprehension task 

contrasting three different levels of sentential constraint, report bilateral 
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desynchronizations in fronto-parietal areas with a bias towards the right hemisphere. The 

authors interpreted this modulation as reflecting attentional and/or working memory 

demands. In our study, while the alpha desynchronization is more ventrally widespread, 

the beta desynchronization is primarily found in posterior temporo-parietal regions for 

both tasks. Right posterior regions are involved in a variety of functions, such as attention 

(specifically, attentional reorienting following unexpected stimuli; e.g. Corbetta, Patel, & 

Shulman, 2008), memory (e.g. Anticevic, Repovs, Shulman, & Barch, 2010), social 

cognition (e.g. Theory of Mind, Van Overwalle, 2009), and aspects of language 

processing (e.g. narrative comprehension, Paunov, Black, & Fedorenko, 2019) and the 

intention to speak (Carota et al., 2010). Our experimental conditions might have induced 

differences in terms of attention and working memory. For instance, we might 

hypothesize that constraining sentences aid attentional orienting towards predictable 

targets to facilitate elaboration. Similarly, the memory load required for sentence 

processing might be modulated by semantic constraint. 

However, the involvement of posterior regions in such a variety of domains led 

researchers to propose unifying accounts identifying commonalities across the different 

domains (Geng & Vossel, 2013; Carter & Huettel, 2013). In particular, Geng and Vossel 

(2013) proposed that the temporo-parietal junction (which includes portions of the 

inferior parietal and the posterior superior and middle temporal cortices), represents a hub 

for the contextual updating of internal models in order to adjust top-down expectations 

about upcoming events and guide planning of future actions. This account directly relates 

attentional and memory-related effects to the contextual generation of predictions. We 

speculate that our results may be compatible with such view. Further research is needed 

in order to replicate the results and, in case of replication, clarify their interpretation. 

 

4.3 Compatibility with prediction-by-production models  

 

We observed that in both comprehension and production, alpha–beta power decreased 

before encountering a predictable stimulus. To what extent do these effects reflect 

common processes involving shared representations? The positive correlations between 

desynchronizations in the two tasks reveal commonalities in areas of the left hemisphere, 

and more specifically the anterior temporal, inferior parietal, temporo-parietal, and 
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inferior frontal cortices. It is relevant to note that all these areas are generally associated 

not only with lexical-semantic retrieval but also with word production. The consensus on 

the neural bases of word production is that lexical-semantic retrieval involves the anterior 

and middle temporal cortex, phonological retrieval involves the posterior temporal–

inferior parietal cortex and syllabic planning involves the inferior frontal cortex and 

premotor cortex, which activates the associated articulatory sequences in the motor cortex 

(for reviews see Indefrey, 2011; Roelofs & Ferreira, 2019; Strijkers & Costa, 2016). 

Correlation analyses highlighted the involvement of all these areas, suggesting that when 

predicting a word, comprehenders engage, at least to some extent, areas associated to 

word production, as proposed by prediction-by-production accounts (Huettig, 2015; 

Pickering & Gambi, 2018; Pickering & Garrod, 2013). 

 As presented in section 1.1, production-based accounts of prediction suggest the 

involvement of other processes essential for communication, i.e. internal modeling, 

inference of intention. We speculate that the desynchronization in the right posterior 

parietal area, which we tentatively discussed in the previous section, may be compatible 

with such views. The lack of temporal overlap between task desynchronizations in this 

region may be due to the fact that the actual intention to produce a word may be 

responsible for the anticipation of the recruitment of posterior parietal regions in the 

production task. Indeed, the effect emerged in beta2 around 300 ms in production and 

later, around 500 ms, in comprehension. Consistently, Strijkers and Costa (2016) suggest 

that top-down modulations (including the intention to speak) originating in the prefrontal 

and parietal cortices can influence the timing of subsequent computations of word 

production. Further research will clarify the involvement of right posterior areas, and 

better characterize their function. 

 

4.4 Limitations and future directions 

 

Our study allows us to bring brain oscillatory evidence for the engagement of the 

production system in prediction during spoken language comprehension. However, our 

results do not allow us to make strong claims on the exact representations involved, 

specifically whether phonology is activated or not. Techniques with higher spatial 

resolution (such as MEG), experimental manipulations that better elicit phonological 
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planning, and the study of special populations with speech–language disorders would 

contribute to characterize the cortical locations of the effects and help in understanding 

what representational levels are implicated. A potentially useful approach would be to 

include cloze probability as a continuous variable with stimuli not clustered around 

extreme values and observe how the oscillatory pattern modulates accordingly. 

With respect to the commonalities between comprehension and production, it 

could be argued that, by including a production task, the experimental design might 

induce participants not only to anticipate the target word in the comprehension task, but 

also to covertly produce it, yielding the commonalities identified with the production task. 

This possibility was minimized by a series of procedural precautions: the two tasks were 

part of separate blocks, task order was counterbalanced across participants, and task-

specific instructions were given to the participants only before each block. Therefore, we 

deem unlikely that the presence of the production task is causing covert production in 

comprehension. However, for ultimately ruling out this possibility, further research 

employing both comprehension and production tasks in the same experiment is needed 

As a remark on the interpretability, it must be underlined that EEG oscillatory 

activity is merely correlated with the observed experimental conditions. Because of this, 

we cannot make strong claims about whether the activity in a given brain area is necessary 

to a given process. However, the results of this study set the basis for further 

investigations with neurostimulation techniques (such as TMS) that could tease apart and 

clarify the role of these areas in language comprehension and production. Finally, we 

point out that intra-, inter-subject, and task-related differences may heavily hinder the 

ability to detect shared cognitive elaboration and neural activation, since we are assuming 

that if there are shared processes, they are unfolding at the same time in the two tasks and 

across all subjects; this may well not be the case. Despite these limitations, we argue that 

we bring sufficient evidence to stimulate further research along these lines, in an 

emerging effort to reconcile the study of language comprehension and production 

(McQueen & Meyer, 2019). 

 

5. Conclusion 
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In this study we tested whether prediction-by-production accounts are supported by 

patterns of alpha and beta neural oscillations. Participants performed both a 

comprehension and a production task with predictable and non-predictable (but always 

plausible) target stimuli following constraining and non-constraining incomplete 

sentences. To our knowledge, this is the first attempt at studying both processes in the 

same set of participants, thereby investigating how the same mind–brain tackles the two 

tasks and directly comparing their neural responses. In addition, we employed naturalistic 

auditory stimuli differently from previous studies, replicating the modulations in a less 

artificial setting. We found alpha and beta power decrease (desynchronization) before 

predictable targets in both tasks, signaling that participants were retrieving and encoding 

rich linguistic information, compatible with the ‘information via desynchronization’ 

hypothesis. Source estimation and correlations suggest that participants engage the left-

lateralized word production areas when predicting during comprehension. Right posterior 

temporo-parietal areas resulted involved during prediction in both tasks and we 

tentatively hypothesized that this might reflect processes related to internal modeling and 

contextual updating of expectations. These results stress the strict relationship between 

production and comprehension processes, lending support to prediction-by-production 

models. 
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