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Abstract
Objective. The N2pc is a small amplitude transient interhemispheric voltage asymmetry used in
cognitive neuroscience to investigate subject’s allocation of selective visuo-spatial attention. N2pc is
typically estimated by averaging the sweeps of the electroencephalographic (EEG) signal but, in
absence of explicit normative indications, the number of sweeps is often based on arbitrariness or
personal experience. With the final aim of reducing duration and cost of experimental protocols,
here we developed a new approach to reliably predict N2pc amplitude from a minimal EEG
dataset. Approach. First, features predictive of N2pc amplitude were identified in the
time-frequency domain. Then, an artificial neural network (NN) was trained to predict N2pc
mean amplitude at the individual level. By resorting to simulated data, accuracy of the NN was
assessed by computing the mean squared error (MSE) and the amplitude discretization error
(ADE) and compared to the standard time averaging (TA) technique. The NN was then tested
against two real datasets consisting of 14 and 12 subjects, respectively.Main result. In simulated
scenarios entailing different number of sweeps (between 10 and 100), the MSE obtained with the
proposed method resulted, on average, 1/5 of that obtained with the TA technique.
Implementation on real EEG datasets showed that N2pc amplitude could be reliably predicted with
as few as 40 EEG sweeps per cell of the experimental design. Significance. The developed approach
allows to reduce duration and cost of experiments involving the N2pc, for instance in studies
investigating attention deficits in pathological subjects.

1. Introduction

A popular practice to study mechanisms and time-
course of covert visuo-spatial attention allocation
in humans is to display multi-element visual arrays
including a unique searched-for target in the left or
right visual hemifield while observing event-related
potentials (ERPs) recorded at posterior electrodes
(usually P7/P8 [1, 2] or PO7/PO8 [3, 4]). A ubi-
quitous finding in so-called visual search tasks is
that the voltage of ERPs recorded at electrodes con-
tralateral (CL) to the visual hemifield occupied by
the target is more negative than the voltage recorded
at ipsilateral (IL) electrodes in a 200–300 ms time-
window. This transient voltage asymmetry has been
termed N2pc [5]. The amplitude of N2pc, classically

quantified by subtracting the IL from the CL activ-
ity, seldom exceeds 2 µV [3, 6, 7]. This places N2pc
closer to the lower end of the signal-to-noise ratio
(SNR) scale, whereby the higher end is represen-
ted by other difference ERP components with amp-
litudes that can be almost one order of magnitude
greater than N2pc, such as the frequency-related P3b
(quantified by subtracting ERPs to frequent stimuli
from ERPs to infrequent stimuli, e.g. [8, 9],) or the
error-related negativity (ERN, quantified by subtract-
ing ERPs recorded on trials associated with a correct
response fromERPs recorded on trials associatedwith
an incorrect response, e.g. [10]).

N2pc is commonly estimated by averaging a sub-
stantial number of sweeps of the electroencephalo-
graphic (EEG) signal, even hundreds [7], the only
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Figure 1. Block diagram of the pipeline to implement, test and validate the neural network predicting N2pc mean amplitude
(TD= time domain, TFD= time-frequency domain, NN= neural network, Hps= network hyper-parameters,
Nswp= number of averaged EEG sweeps).

apparent limit in data collection being human toler-
ance. In many neuroscientific studies, however, find-
ing the right balance between number of sweeps and
quality of the results is an issue, because long experi-
ments with fast-pace event administration are men-
tally vexing and source of anxiety [11]. In a recent
work relying on simulated data mimicking a com-
mon visual search task designed to evoke the N2pc,
we demonstrated that there is no substantial improve-
ment in detecting the presence of a reliable N2pc
in group-average ERPs when more than 20–30 EEG
sweeps for each CL and IL component of the N2pc
are averaged, even in particularly noisy conditions
[12]. This suggests that, at least for relatively simple
experimental designs at the group-average level [13],
reducing—rather than increasing—the number of
EEG sweeps may result in an increment in data qual-
ity, by further mitigating the risk of deteriorating
participants’ performance because of the prolonged
experimental duration.

In cognitive and clinical neuroscience, besides
group studies, one may be also interested in the
administration of quick tests exploring the residual
attentive skills of a single subject with a unique or
peculiar pattern of symptoms (e.g. [14, 15]). In this
context, there is the need of a method able to reli-
ably predict the individual N2pc amplitude from an
EEG dataset acquired during short-duration tasks.
In the present paper, an approach resorting to a
neural network (NN) fed by features predictive of
N2pc amplitude (identified from a time-frequency
domain analysis of real EEG data) is developed and
assessed against the standard time averaging (TA)
technique.

Figure 1 describes the organization of the paper,
the four blocks representing the four major steps
entailed in the proposed methodology. The used
datasets, including a simulated dataset, i.e. DatasetS1,

and two real datasets, i.e. DatasetR1 and DatasetR2
(consisting in 14 and 12 subjects, respectively), are
described in section 2. Section 3 documents the first
step of the procedure, which consisted in identifying
which EEG time-frequency (TF) domain indicators
could be predictive of N2pc amplitude in individual
EEG datasets (block A in figure 1). More specific-
ally, by using DatasetR1, we tested retrospectively the
correlation stability between power in δ, θ, α and β
bands and N2pc amplitude while the number of indi-
vidual EEG sweeps associated to laterally displayed
visual targets and contributing to the CL and IL ERP
components of N2pc was progressively reduced. The
results of the analysis were clear-cut in showing that
power at δ and θ bands were particularly stable pre-
dictors of N2pc amplitude in individual EEG data-
sets. Section 3 also describes how, as second step
of the procedure, the synthetic DatasetS1 was used
to confirm that correlations between amplitude of
the N2pcs and the TF parameters previously iden-
tified on the real dataset were stable also in simu-
lated data (block B in figure 1). In section 4, the
third step of the procedure is reported (block C).
Specifically, the selected EEG features were used to
train and test an artificial NN designed to predict
the amplitude of synthetic N2pcs. Section 5 describes
the fourth step (block D), which consists in assess-
ing the NN on real data collected by administering
to human adults common, albeit physically differ-
ent, variants of a visual search design specifically
devised to elicit anN2pc in response to lateralized tar-
gets embedded amongdistractors. After a preliminary
check of the optimal NN proficiency in N2pc amp-
litude detection on DatasetR1, the final validation test
was carried out on a previously unseen real EEG data-
set labelled as DatasetR2. Finally, section 6 provides
a discussion of methods and results, while section 7
ends the paper with some closing remarks.
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2. Datasets

DatasetR1, described in details in [12], included the
data from 14 participants (mean age 23.2± 2.1 years,
five males) to a standard visual search task designed
to elicit the N2pc. Participants were asked to report
the orientation of a bar (either tilted or vertical)
displayed in a colored circle, which was the visual
target, surrounded by homogeneous distractors (all
white circles). Each participant contributed 600 EEG
sweeps, i.e. 200 EEG sweeps for each of CL and IL
components of the N2pc (associated lateralized tar-
gets), and 200 EEG sweeps generated when targets
were displayed along the vertical meridian. EEG data
in [12] were registered at a sampling rate of 500 Hz
from 28 electrodes positioned according to the inter-
national 10–20 system. Three additional electrodes
were used to register eye movements [14, 15], and
placed at the outer canthi and below the left eye. Fol-
lowing removal of EEG sweeps associated with incor-
rect responses and artifacts, EEG data were band-
pass filtered (0.1–30 Hz). EEG activity recorded at P7
(left parietal hemisphere) andP8 (right parietal hemi-
sphere) electrodes [2, 4] was segmented into 1600 ms
sweeps, starting 600 ms before the stimulus onset.
EEG sweeps were classified according to the target
position in the visual field in right (R), left (L), or
central (C)-targeted sweeps. EEG sweeps recorded in
response to laterally displayed targets were further
classified as CL and IL according to the relative pos-
ition of electrodes and target side (i.e. P7 electrode
was CL with respect to right targets and IL for left
targets, and viceversa for P8). Six design-cell clusters
of EEG sweeps resulted from this subdivision and
were labelled P7-R, P7-L, P7-C, P8-R, P8-L and P8-C.
DatasetR1 was used both to develop the grand-average
(GA) template for the generation of the synthetic
dataset and as preliminary test of the NN perform-
ance on real data (figure 1, block D).

DatasetR2 was described in detail in Doro et al
[16]. Briefly, it was composed of the data from 12
participants (mean age 31 ± 6 years, six males), each
contributing 960 EEG sweeps, i.e. 320 EEG sweeps for
each of CL and IL components for lateral targets and
320 EEG sweeps generated when targets were cent-
ral (i.e. displayed along the vertical meridian). Par-
ticipants were asked to identify and report the pres-
ence or absence of the target object (a coloured disk)
among homogeneous distractor items (all grey disks).
EEG data in [16] were registered at a sampling rate of
500Hz from27 electrodes positioned according to the
international 10–10 system and were pre-processed
offline using the same parameters as those used for
DatasetR1 with the exception that EEG was recorded
at PO7 (left parieto-occipital hemisphere) and PO8
(right parieto-occipital hemisphere) electrodes [3, 4],
rather than P7/P8 [1, 2], due to a different montage
available. EEG activity was segmented into 1600 ms
sweeps, starting 600 ms before the search array onset.

For the sake of labelling consistency across datasets,
EEG sweeps were classified according to the target
position in right (R), left (L), or central (C). EEG
sweeps recorded in response to lateral targets were
further classified as CL and IL according to the spatial
arrangement of electrodes and targets’ side (i.e. PO7
channel was CL for right targets and IL for left tar-
gets, and viceversa for PO8), resulting in six design-
cell clusters of EEG sweeps, that were labelled PO7-R,
PO7-L, PO7-C, PO8-R, PO8-L and PO8-C. DatasetR2
was employed to further test the NN and validate it
(figure 1, block D) using data measured in a differ-
ent, albeit similar, experimental variant than the one
of DatasetR1.

The synthetic DatasetS1 was used to train and test
in a controlled environment the NN on ten scen-
arios with a different numerosity in terms of CL and
IL sweeps used to calculate the N2pc, with the aim
to evaluate NN prediction performance as a func-
tion of the dataset dimension (figure 1, block C).
In simulation it is possible to perform a wider and
more precise quantitative evaluation of NN predic-
tion error having a higher dataset dimension and a
ground truth for the estimates, so that different scen-
arios can be tested. The synthetic dataset was gener-
ated using the simulator described in [12]. Briefly,
the GA ERP template for each of the six design-cell
clusters of DatasetR1 was created by fitting a Gaus-
sians mixture model (GMM) to the corresponding
group-average ERP [17–20] (figure 2(a)). To create
realistic synthetic data, we estimated the variability
ranges for amplitude and latency on the CL and IL
sweeps in DatasetR1 and used these to constrain the
variability of synthetic sweeps in theN2pc time range.
For each design-cell cluster, synthetic sweeps were
obtained by applying a random perturbation to each
average CL and IL template simply by summing to the
template two additionalGaussianswith variable amp-
litude, variance, and latency in the N2pc time range
only, so as to create arbitrary variable individual
sweeps in (200–300) ms time window (figure 2(b)).
Only synthetic sweeps with amplitude and latency
values within the bounds previously estimated from
DatasetR1 were retained for analysis, to avoid mis-
representing synthetic data, and hence introducing
possible biases in the results. Eventually, the noisy
sweeps of DatasetS1 were obtained by corrupting the
generated noise-free synthetic traces of each design-
cell cluster with real background EEG noise acquired
from two additional participants (not included in
DatasetR1) under resting-state (RS) conditions, to
preserve the statistical properties of spontaneous EEG
activity (figure 2(c)) and reduce the leakage between
simulated and real data. In order to create EEG sweeps
associated with distinct levels of SNR, the corrupt-
ing RS noise was modulated in amplitude and power
by multiplying the original noise traces by a series
of multiplicative factors (i.e. 0.25:0.25:1.25). Eventu-
ally, each of the six design-cell clusters of DatasetS1
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Figure 2.Workflow to synthetize hundreds of CL and IL sweeps and derive the N2pc component. (Panel a) Creation of the ERP
template from the grand-averaged (GA) data computed from the real subjects of DatasetR1. (Panel b) Generation of hundreds of
synthetic CL and IL sweeps from each GA template that will be used to derive the N2pc. (Panel c) Addition of resting-state (RS)
EEG noise to each generated synthetic sweep.

contained 200 simulated EEG sweeps, 100 with SNR
∈ [0–0.5] and 100 with SNR ∈ [0.5–1].

Synthetic N2pcs in DatasetS1 were then derived
through the standard procedure of subtracting an IL
from a CL sweep, both selected at random from the
pool of generated signals in the corresponding design-
cell cluster. The described procedure was devised to
limit the leakage of information between the para-
meters and the statistical properties of the generated
N2pcs and those of DatasetR1, since only the CL and
IL parameter bounds and the GA waveform needed
to create the template—but then considered for the
analyses in the restricted time range of the N2pc-
were derived from the real dataset, whereas synthetic
N2pcs were generated arbitrarily from the original
templates.

Remark. A note is in order concerning EEG
sweeps in design-cell clusters P7/8 C of DatasetR1
and DatasetS1 and PO7/8 C of DatasetR2, namely,
EEG sweeps recorded on trials in which a searched-
for target occupied a ‘central’ position in the search
array (i.e. a position aligned to the vertical meridian
of the screen used for stimuli presentation in the
corresponding visual search experiment). These EEG
sweeps, which can only arbitrarily be classified as CL
or IL relative to electrode/scalp location for obvi-
ous reasons, are expected to give rise, when aver-
aged and subtracted, to N2pc amplitude approxim-
ately equal to 0 µV.As describedmore in detail below,
‘central’ EEG sweeps were useful for the present pur-
poses to simulate individual cases of absence of N2pc,

which is one among the possible real cases that a
properly trained NN designed to predict the N2pc
amplitude ought to discriminate in individual EEG
datasets.

3. Time-frequency (TF) analysis for the
identification of N2pc amplitude
predictors

3.1. Identification of TF predictors of N2pc
amplitude using DatasetR1
We addressed our investigation toward TF domain
indicators, given their well-established relation-
ship with human cognition in general (e.g. [21]),
and high-level visual processing in particular (e.g.
[22, 23]). In particular, given the different amplitude
scale of N2pc and EEG noise in the time domain, we
extracted EEG markers predictive of the individual
N2pc from the TF domain through an analysis of CL
vs. IL variations in terms of power across the entire
spectrum of frequency bands. Analyses were per-
formed on DatasetR1 (figure 1, block A) considering
EEG sweeps recorded on trials with lateral targets
only (i.e. disregarding EEG sweeps for central targets;
see previous remark).

The spectrogram of each averaged signal was
computed for every participant over windows of 50
samples with five overlapping samples and by apply-
ing the Hamming windowing to each averaged signal
to reduce the discontinuities at the boundaries. Both
the CL (obtained as the average of P7-R and P8-L),
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Figure 3. (Left panel) Spectrogram of a representative CL sweep; the black rectangle defines the N2pc time range (i.e. 200–300 ms
from stimulus onset). (Right panel) Power spectral density (PSD) in the four conventional frequency bands considering the N2pc
time range only.

Table 1. Correlation between N2pc power at each frequency band and N2pc mean amplitude obtained varying number and position
(i.e. first, central or final) of the cluster of averaged EEG sweeps used to compute the CL and IL components of the N2pc. Bold-faced
numbers are the significant correlations (p <.05).

f-band All sweeps
First 40
sweeps

First 20
sweeps

First 10
sweeps

Central
40 sweeps

Central
20 sweeps

Final 40
sweeps

Final 20
sweeps

α −0.92 −0.90 −0.61 −0.58 −0.75 −0.82 −0.94 −0.81
β −0.80 −0.78 0.34 0.42 −0.68 −0.59 −0.54 −0.05
δ −0.95 −0.94 −0.91 −0.92 −0.81 −0.87 −0.95 −0.92
θ −0.94 −0.93 −0.85 −0.88 −0.79 −0.86 −0.95 −0.91

and the IL ERP (obtained as the average of P7-L
and P8-R) as well as the corresponding N2pc of
each subject were analyzed in the TF domain as
described. We computed the absolute power at the
standard frequency bands from each individual spec-
trogramwithin theN2pc time range (i.e. 200–300ms)
(figure 3) and correlated each power band with the
mean amplitude of the corresponding N2pc.

Correlations between N2pc mean amplitude and
EEG power bands were evaluated while progressively
increasing the number of EEG sweeps considered in
the average for each CL and IL component of the
N2pc (i.e. by considering subsamples of 10, 20, 40
sweeps or all the sweeps available for each subject in
the dataset), with the aim to evaluate whether and
when correlations were stable. Furthermore, the pos-
ition along the entire EEG recording of the sweeps
included in the average was varied (i.e. sweeps were
selected either during the initial, or middle or final
phase of the visual search task) to check whether cor-
relations were dependent on the temporal stint of the
data acquisition.

The results of the correlation analysis are
reported in table 1. When all EEG sweeps
(mean ± SD = 101 ± 39 for IL data, 102 ± 38
for CL, with a minimum of 41 sweeps) were con-
sidered in the average, a statistically significant cor-
relation between N2pc amplitude and N2pc powers
at all frequency bands was observed. Correlations

remained statistically significant even when using the
minimum number of EEG sweeps available across all
subjects and channel-target design-cell clusters, i.e.
40 sweeps. When the number of sweeps was reduced
below 40, the correlation between α and β bands and
the N2pc amplitude started to decrease, with β band
becoming uncorrelated when less than 20 sweeps
were used, possibly implying that high-frequency
bands started to be affected by noise. Moreover, for
the low-frequency power bands, i.e. the δ and θ band,
the observed correlations were statistically signific-
ant independently of the temporal location of the
considered ensemble of sweeps inside the subject’s
recording (table 1). This result seems to suggest that
low-frequency band powers in the N2pc time range
correlatewithN2pc amplitude stably and could there-
fore be good predictive features to be fed to an NN
designed to predict the amplitude of N2pc in indi-
vidual EEG datasets using a reduced number of EEG
sweeps.

Similar results were obtained when evaluating the
relationship between the powers at the different fre-
quency bands for the CL and IL average activities and
the N2pcmean amplitude. In particular, higher amp-
litude N2pcs showed a peculiar difference between
power values for CL and IL activities, particularly in
the δ/θ andα band, whereas this difference decreased
to nil as the N2pc amplitude approximated zero (see
[24]).
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Figure 4. Correlation between the N2pc mean amplitude and the percentage power difference (PPD) of the CL and IL activities in
the δ (left panel) and α (right panel) band computed on DatesetR1. In each panel, Pearson’s correlation coefficient (PCC) is
reported at the top right.

In figure 4, for each subject, the absolute differ-
ence between the power of the CL and IL compon-
ents for both δ (θ band was similar) and α band,
computed in percentage of themaximumpower value
between the correspondingCL and IL power distribu-
tions (defined as percentage power difference,PPD=
abs(CL−IL)
max(CL, IL) × 100), is reported as a function of the
individual N2pc mean amplitude. Both α and δ
power and N2pc mean amplitude were calculated
by considering the maximum number of available
sweeps for each subject to reduce to theminimum the
influence of EEG noise. A significant Pearson’s correl-
ation coefficient (PCC) resulted for both power bands
(PCC = −0.75 for the δ/θ bands and PCC = −0.7
for the α band). This result indicates that also CL/IL
power bands could be new important predictors to be
fed to the NN.

3.2. Evaluation of the stability of TF predictors on
datasetS1
Before training and testing the NN with synthetic
data fully resembling a real scenario, we had to con-
trol whether the correlation results observed on the
real EEG data also held on data entirely simulated in
the time domain, without accounting for subtle syn-
chronization of phases that might run in the back-
ground (figure 1, block B).

To accomplish this goal, DatasetS1 was used. From
the ensemble of synthetic noisy traces, 100 random
sweeps were selected for the CL and IL components
of both P7 and P8 electrodes and averaged to com-
pute the corresponding N2pc. The choice of aver-
aging such a high number of EEG sweeps is due to the

need of reducing to the minimum the noise level for
synthetic data. The procedure was repeated 10 times,
thus obtaining 140 average N2pcs with random amp-
litude and latency values used for this second TF ana-
lysis. Synthetic N2pcs underwent the same procedure
described for the real data.

Correlation between low-frequency band powers
andN2pcmean amplitude was statistically significant
(PCC=−0.94 for both the δ and θ band), mirroring
the results of real data. By grouping powers accord-
ing to N2pc mean amplitude (AN2pc), i.e. whether
AN2pc <0.5, 0.5⩽AN2pc <1 orAN2pc ⩾1, a clear segreg-
ation emerged, above all, between the first and last
group.

4. Development of neural network (NN) to
predict N2pc mean amplitude

In the present section, the different steps schematic-
ally summarized by block C of figure 1 are described
in depth.

4.1. Overview of NN structure and testing
The rationale of NN implementation, as well as the
estimate of the average amplitude of synthetic N2pcs
under different scenarios varying sweeps numer-
osity, is described in detail with reference to the
blocks (from ‘a’ to ‘c’) of the scheme illustrated in
figure 5, panel A. Briefly, ahead of the NN train-
ing phase, each synthetic scenario was split into
training (80% of the samples) and test (20% of the
samples) set (figure 5(A), block a). For each scen-
ario, the training set was used firstly to optimize the

6
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Figure 5. (Top Panel, A) Scheme of the network training and of the hyper-parameter optimization procedure. (Block a) Random
initialization of the network hyper-parameters (Hps) and definition of training and test sets; (Block b) 5-fold cross-validation
(CV) over the training set to optimize Hps. (Block c) Selection of the best Hps set and performance evaluation of the optimal
network on test set. (Bottom panel, B) Structure of the proposed three layers fully connected neural network (NN) in its initial
configuration with all the connections plotted as full. NN hyper-parameters are marked in red.

NN hyper-parameters (Hps) during a cross valida-
tion (CV) procedure, secondly to define the best NN
structure (figure 5(A), block b) and finally to train the
optimal NN (figure 5(A), block c). Afterwards, N2pcs
belonging to the test set of the corresponding scenario

were used to score NN performance in amplitude
prediction. NN implementation, as well as training
and test phases, were entirely performed in Python
(Python Software Foundation. Python Language Ref-
erence, version 3.6. Available at www.python.org).

7
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Table 2. Percentages of synthetic N2pc sweeps in each scenario of CL and IL sweeps numerosity and in each N2pc amplitude range,
considering both training and test sets.

Amplitude
(AN2pc)

10
sweeps

20
sweeps

30
sweeps

40
sweeps

50
sweeps

60
sweeps

70
sweeps

80
sweeps

90
sweeps

100
sweeps

AN2pc< 0.5 35% 35% 37% 37% 37% 38% 38% 38% 37% 37%
0.5⩽AN2pc< 1 19% 19% 18% 17% 17% 17% 18% 16% 18% 18%
AN2pc⩾ 1 46% 46% 45% 46% 46% 45% 44% 46% 45% 45%

4.2. Hyper-parameter (Hp) optimization
A feedforward fully connected NNwas used to estim-
ate the amplitude of simulated N2pcs. The selected
NN included an input layer of dimension F, whose
neurons received one of theF final features thatwill be
discussed in depth in section 4.4, three hidden layers
(HLs), a one-dimensional output layer (with linear
activation function) and two additional dropout lay-
ers. Dropout layers are typically used in NNs imple-
mentation for regularization purposes and to prevent
overfitting. The rationale of dropout layers is to ran-
domly drop out (i.e. set to zero), at each training iter-
ation, some neurons (and the related connections) of
the layer right before the dropout layer [25] to optim-
ize the network structure starting from its initial con-
figuration visible in figure 5, panel B. The fraction of
neurons that are set to zero during the training phase
is called dropout percentage [26]. In our setting, one
dropout layer was interposed between the first two
HLs, while the other was between the second and the
last HL.

The size of the three HLs, the activation func-
tion of the input layer and of the three HLs, the dro-
pout percentages and the mini-batch size were the
hyper-parameters (Hps) of the network, necessary to
determine the optimal structure. Hps were optim-
ized on training set data during a 5-folds CV proced-
ure, following the rationale of reaching a compromise
between capability of fitting and ability to general-
ize to new datasets (figure 5(A), block b). Trees of
Parzen estimators (TPE) technique was used to solve
Hps optimization and predict the set of Hps with the
best mean squared error (MSE). At each iteration, the
algorithm analyzes a new Hps set and decides the fol-
lowing Hps to evaluate. During CV, the training set is
split into five folds, four of which are used for train-
ing the NN and one is left for validation. The average
MSE is computed for each set of Hps across folds and
the one with lower MSEHp defines the optimal net-
work structure, which is eventually ran on test data.
A scheme of the described NN structure is illustrated
in figure 5, panel B, in its fully connected configur-
ation before starting the training. In the figure, the
main network Hps are indicated in red.

4.3. Synthetic datasets to train and test the NN
Ten different synthetic scenarios varying sweeps
numerosity, i.e. from 10 to 100 with a step of ten
sweeps, were created to train and test the artificial
NN by randomly selecting sweeps from DatasetS1

described in section 2 (figure 1, block C). Each scen-
ario counted N = 2720 samples (i.e. averaged CL,
IL and N2pc sweeps); 80% of these were used for
the training and 20% for the testing of the NN.
Moreover, each scenario comprised the same number
of averaged CL and IL sweeps for lateralized targets,
averaged central target sweeps (obtained by averaging
P7-C with P8-C) and hence averaged N2pcs for both
lateralized and central targets. For lateralized targets,
N2pc sweeps in each scenario were computed con-
ventionally by subtracting the IL activity from the CL
activity. For central-target sweeps, fictitious N2pcs
were computed by subtracting the activity at P8 (P7)
from the one at P7 (P8), by randomly selecting each
time the sign of the subtraction, that is, the CL and IL
sweeps were selected from P7-C or P8-C ensembles at
random and with equal probability. This procedure
should produce an N2pc close to zero. Each scenario
was created so that the N2pc sweeps comprised in the
dataset could be partitioned in the three amplitude
ranges discussed in the previous section (table 2).

The ten scenarios only differed in the number
of EEG sweeps (labelled as Nswp) used to calculate
the average CL and IL components of the N2pc. The
number of EEG sweeps in each scenario was incre-
mented with a step of 10 sweeps per target side at
a time (and 20 per CL and IL component), starting
from a minimum of 10 for the first scenario up to a
maximumof 100 sweeps for the last one. For example,
the average CL component in the dataset correspond-
ing to Nswp = 100 was obtained by averaging 200
random sweeps in total, 100 taken from P7-R and 100
fromP8-L (both groups including theCL signals of P7
and P8 electrodes). To enlarge the dataset this proced-
ure was repeated many times.

A different NN was trained and tested consider-
ing each of the ten different simulated scenarios and
their performances were compared to establish the
minimum value of EEG sweeps numerosity achieving
acceptable prediction error, hence the optimal NN to
be finally tested on real experimental data.

4.4. NN input features
The NN was fed with the selected TF-based features,
i.e. the α,β,δ and θ power bands of both the CL and
IL ERP and of the resulting N2pc, with additional
information related to the noise content of the sig-
nals into play derived from the time domain, rep-
resented by the SD of their pre-stimulus. Moreover,
the variance of the N2pc within its time window
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Table 3. List of the features (F) fed to the NN (SD= standard deviation, BL= baseline, VAR= variance, CL= contralateral
component, IL= ipsilateral component).

Features
(F)

α,β,δ,θ
power
(N2pc)

α,β,δ,θ
power (CL)

α,β,δ,θ
power (IL)

SDBL

(N2pc) SDBL (CL) SDBL (IL)
VAR (N2pc
time range)

CL-IL
(N2pc time
range)

(i.e. 200–300 ms) was also considered among the fea-
tures. This parameter strengthened the set of features
by carrying information about the noise level in the
time window of interest, hence improving the final
NN estimation performance, especially for N2pcs
associated to midline targets. To account for inver-
ted (namely, positive) N2pcs, whose behavior in the
four power bands was very similar to negative N2pcs,
we considered as a new input feature the difference
between the average CL and IL signal in the N2pc
time range. Indeed, on synthetic data, we observed
that when the difference between CL and IL ERP was
greater than 0.5 µV in the N2pc time window, this
metric succeeded in predicting the actual sign of the
N2pc: the overall error was equal to 2.8% when aver-
aging 100 EEG sweeps to compute the N2pc and to
7.1% with 40 EEG sweeps only, independently of the
SNR range. The final number of features was F = 17
(table 3).

4.5. Assessment of the NN for N2pc mean
amplitude estimation
4.5.1. Metrics of performance
NN training was performed through a gradient des-
cent RMSprop algorithm applied in a mini-batch
mode, while NN performance on training and val-
idation set (25% of the training samples) was evalu-
ated through MSE and loss function. On test set, the
percentage MSE, henceforth abbreviated as MSEp,
was instead considered to score and compare network
performances among the ten different synthetic scen-
arios so as to weight for the typical low amplitudes of
the N2pc component.

As additional error metric, we computed the
amplitude discretization error (ADE) of the NN
estimates by discretizing the estimated amplitudes
through a reasonable threshold at 0.5 µV, considered
as the minimum amplitude value distinguishable
from the background EEG. Amplitudes were classi-
fied into two classes, that is, whether higher or lower
than the selected threshold, indicating whether the
individual N2pc was present (and well visible) or not
in the considered data, respectively. Then, to compute
ADE for each amplitude class, the number of mis-
classified samples was considered in percentage of the
total number of samples of that class.

For comparisonpurposes, for each synthetic scen-
ario of sweeps numerosity, we compared NN estim-
ates on test set with the temporal averaging (TA)—
in the N2pc time window—of the mean ERP com-
puted from the corresponding scenario. TA is a very
fast and old-fashioned approach conventionally used

to easily estimate the parameters of an ERP compon-
ent from an averaged noisy signal. In the synthetic
scenarios, by comparing NN results with those of TA
we can quantitatively compute the estimation error
of both approaches, while in real scenarios, we can
only observe whether there is similarity/difference
between them in the estimate of N2pc amplitude.

4.5.2. Optimal NN structure and CV results
The optimal NN structure was the same in each syn-
thetic scenario and included the input layer, three
dense hidden layers, the output layer, and two dro-
pout layers. The first layer was composed of 17 nodes
corresponding to the 17 input features and had sig-
moid activation function, the following three lay-
ers had (dimension, activation function) of (64, sig-
moid), (128, sigmoid), and (32, linear), respectively.
The last layer presented 1 node with linear activation
function and was meant to perform a linear regres-
sion to estimate continuous N2pc amplitudes. The
dropout percentages of the two interposed layers were
0.727 and 0.763, respectively, while the optimal mini-
batch size was equal to 32. In total 13 939 parameters
were trained in a 5-fold CV procedure to select the
best NN structure.

The final loss of the selected NN was evaluated
over 350 epochs in a CV procedure. The MSE of the
NN corresponding to the scenario with Nswp = 40,
that was selected to be finally tested on real data, was
equal to 0.21 for the validation set—including the
25% of training samples selected at random—and to
0.28 for the training set.

4.5.3. Assessment on simulated data
Figure 6 shows two representative examples of theNN
amplitude estimates obtained in the synthetic scen-
arios corresponding to Nswp = 40 and Nswp = 100
EEG sweeps (top and bottompanel, respectively). The
MSEp of the former scenario is equal to 10.7% for
NN estimates vs. 58.4% for TA estimates; instead, the
MSEp of the latter—considered as a gold-standard
scenario in terms of noise level—is 4.3% for the NN
vs. 26.3% for TA. Not surprisingly, by increasing
the number of EEG sweeps considered in the aver-
age, the noise level is significantly reduced by aver-
aging effect, so that NN estimates improve and the
MSEp gets lower and lower. Conversely, the higher
the number of EEG sweeps, the more the estimates
get closer to those of TA (figure 6, bottom panel) and
the gain of the NN becomes negligible. Despite the
evident decrease in the error as Nswp approaches its
maximum value of 100, it is necessary to establish
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Figure 6. Test set performance of the NN trained over the scenarios corresponding to Nswp= 40 (top panel) and Nswp= 100
(bottom panel). In each panel, solid red line indicates the predicted N2pc amplitudes for each test sample, solid blue line the true
N2pc amplitudes, while back dotted line the amplitude values obtained with the TA method.

a trade-off between dimension of the dataset and
estimation accuracy.

Figures 7 and 8 illustrate the overall network res-
ults on test set as a function of the synthetic Nswp
scenario both in terms of MSEp and ADE, respect-
ively. In figure 7, the MSEp obtained with the NN
in each scenario (green bars) is compared to the cor-
responding MSEp of the TA method (blue bars). For
each scenario, the maximum SD of the MSEp was of
about 1%–2%.

Figure 8 instead reports, for each synthetic scen-
ario, the values of ADE in two amplitude classes, sep-
arated by a fixed threshold on the N2pc amplitude,
and the global network error, both for the NN and
the TA method (panel A and B, respectively). Here
we used 0.5 µV as a reasonable threshold for dis-
criminating datasets with a well visibleN2pc response
from datasets with a very little or absent component.
Notably, the global error reported in the figures can
be considered as the potential error achieved when

using the NN to discriminate presence or absence of
the N2pc response with respect to a threshold on the
estimated amplitude. Panel A of figure 8 shows that
the global error for the NN is below 15% when aver-
aging more than Nswp= 40 EEG sweeps. By increas-
ing Nswp up to 100 EEG sweeps, the error is lowered
to a minimum of about 4%. Instead, the ADE for the
TA method is worse and equal to 32% and 26% for
Nswp= 40 and 100, respectively (figure 8, panel B),
thus implying a gain of the NN of around 20% for
both scenarios. In terms of MSEp, the NN gain for
the same scenarios is approximately 48% and 22%,
respectively.

Table 4 shows, for each dataset, the true posit-
ive rate (TPR), i.e. the percentage of samples with
an actual N2pc response which are correctly classi-
fied, and the false positive rate (FPR), i.e. the percent-
age of samples with a visible N2pc which are incor-
rectly classified, for both NN (top two table rows) and
TA (bottom two table rows). Results highlight that,

10



J. Neural Eng. 18 (2021) 056044 F Marturano et al

Figure 7.MSEp of the test set. NN estimated amplitudes (green bars) vs. TA amplitudes (blue bars) as a function of the simulated
Nswp scenario.

despite the two methods perform similarly in terms
of TPR (or sensitivity), they substantially differ for the
FPR (or 1-specificity). FPR is considerably higher for
TA than for NN estimates, suggesting that the former
has a lower specificity. The presented outcomes show
that the NN correctly predicted the presence/absence
ofN2pc in 85%of individual cases when fedwith only
40 sweeps per each cell of the experimental design,
with a significant improvement with respect to the TA
method, both in terms of accuracy and specificity.

5. Assessment of the NN on real data

As depicted in block D of figure 1, the NN (trained
over the synthetic scenarios with Nswp = 40) was
finally tested on the two real datasets, DatasetR1
and DatasetR2, considering, for each subject, 40 EEG
sweeps per channel-target design-cell cluster (except
of one subject who had only 37 sweeps per cluster).
In both real datasets, each NN was first evaluated on
N2pcs associated to lateralized targets (i.e. right and
left visual stimuli), where we expected to observe a
significant response, and then on N2pcs computed
from trials associated to central targets (i.e. placed on
the vertical midline), to test for the NN capability of
recognizing reduced or absent N2pc responses. For
each subject in the real datasets, NN predictions were
compared to the N2pc amplitudes estimated with TA
method, averaging the same number of EEG sweeps
used for the NN, to evaluate the two methods within
the same noise scenario.

Amplitude predictions for both the selected NN
and TA and for each real subject are shown in figure 9,
left two panels for the lateral targets and right two

panels for the midline ones. Panels A and B are
instead related to the specific dataset. Of note, on real
data, given the absence of ground truth amplitudes,
we could neither compute the exact NN and TA
errors, nor we could make any quantitative compar-
ison between the estimates obtained with two meth-
ods, to draw any conclusion regarding which method
performs better. However, we can discuss the differ-
ent performance of the two approaches also consid-
ering the estimates obtained for the N2pcs associated
to midline targets, which we expect, theoretically, to
be close to zero. These results are reported in the right
two panels of figure 9 for the NN and TA; panel A is
related toDatasetR1, while panel B toDatasetR2. These
results suggest that the NN seems to outperform TA
by more efficiently recognizing fake N2pcs associated
tomidline targets, evenwhen fedwith 40 sweeps only:
amplitude estimates were close to zero for most of
the real subjects, as expected, both for DatasetR1 and
(especially) for DatasetR2. TA amplitudes, estimated
using the same number of sweeps fed to the NN,
were instead more influenced by background noise
compared to the NN, thus supporting the speculation
about the superiority of the proposed method for the
prediction of N2pc amplitude from datasets of small
dimension.

In conclusion, these results agree with simula-
tion outcomes, supporting the general finding that
as few as 40 EEG sweeps per cell of the experimental
paradigm, that is a total of 80 sweeps for the CL and
80 for the IL component, could be fed to an NN to
predict individual N2pcs with good reliability, at least
for experimental variants and settings similar to those
described here.
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Figure 8. (Panel A) Amplitude discretization error (ADE) of the NN estimates on test set data as a function of the simulated
scenario of sweeps numerosity. (Panel B) ADE computed for the amplitudes relative to the TA method.

Table 4. True positive rate (TPR) and false positive rate (FPR) for the N2pc amplitudes estimated with NN and TA as a function of the
synthetic Nswp scenario.

10
sweeps

20
sweeps

30
sweeps

40
sweeps

50
sweeps

60
sweeps

70
sweeps

80
sweeps

90
sweeps

100
sweeps

NN
estimate

TPR 0.80 0.82 0.82 0.88 0.92 0.94 0.93 0.93 0.93 0.95
FPR 0.29 0.20 0.20 0.16 0.14 0.16 0.07 0.09 0.09 0.04

TA
estimate

TPR 0.84 0.79 0.79 0.81 0.79 0.87 0.85 0.86 0.84 0.82
FPR 0.73 0.56 0.64 0.53 0.52 0.46 0.46 0.52 0.41 0.41
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Figure 9. Performance on real datasets of the NN trained with Nswp= 40 averaged EEG sweeps, both for lateral (left two panels)
and central targets (right two panels), respectively. Panels A correspond to real DatasetR1, while panels B to DatasetR2. For each
real subject, solid red line depicts the amplitude estimated with the NN, black dotted line that computed with TA, while light-blue
dashed line indicates the amplitude threshold at−0.5 µV used to compute ADE.

6. Discussion

In the present manuscript, we pursued the goal of
predicting N2pc amplitude at the individual level,
to be able to characterize patient’s efficiency in the
deployment of visual attention, and simultaneously
reducing the number of EEG sweeps required for its
estimation. To individuate parameters predictive of
the investigated component, we first performed a pre-
liminary analysis exploring time and TF domain of
both N2pc and its CL and IL components. This ana-
lysis, carried out on the real experimental DatasetR1,
revealed a high and stable correlation between the
mean amplitude of the N2pc and the low-frequency
EEG power bands. In addition, the pattern of the
CL and IL ERP in the α and δ/θ bands was pre-
dictive of the N2pc presence within the dataset. To
confirm the stability of these features across datasets,
we performed the same correlation analysis between
N2pc mean amplitude and EEG powers also for the
DatasetR2. The PCC resulted equal to−0.78 for the δ
band and to−0.73 for the θ band, thereby confirming
the promising use of TF-based features for predicting
the N2pc on a different dataset.

We implemented an NN-based estimation tool
driven by EEG power bands and other time-related
features predictive of the noise content in the data
to estimate N2pc mean amplitude and discriminate
subjects with a well visible N2pc from those with
a little to absent response, hence participants who
efficiently allocate their attention to the cued target
from those who do not. From DatasetS1 we created

a realistic simulation scenario wherein to test the
NN in the estimation of the N2pc mean amplitude
while progressively increasing the number of EEG
sweeps in order to define both the best NN and a
lower bound for the EEG dataset dimension. Even-
tually, the selected NN was validated on real N2pc
traces derived from two different datasets and consid-
ering signals associated both to lateral and central tar-
gets. Thismultiple validation strategy was intended to
strengthen the validity domain of the developed NN
tool and to generalize the present outcomes to differ-
ent real contexts. Of note, the use of a different, albeit
similar, experimental variant from that of DatasetR1,
i.e. DatasetR2, for the final testing of the NN further
reduced the risk of overfitting.

In the realistic synthetic scenario, the NN was
able to predict N2pc mean amplitude with accuracy
of around 85% from EEG datasets consisting of only
40 sweeps per each cell of the experimental design
(i.e. right, left, and central target), hence obtaining
good balance between dataset dimension and predic-
tion accuracy. With our approach, the typical dimen-
sion of an EEG experiment designed to measure the
N2pc would be reduced to more than 50%. Note, for
comparison, that real DatasetR1 and DatasetR2 coun-
ted 200 and 160 sweeps per each cell of the exper-
imental design, respectively. However, it is worth
noting that our aimwas not to establish the best num-
ber of EEG sweeps required to compute the N2pc,
but to demonstrate that, with an NN approach, an
N2pc could be reliably estimated using a minimal
dataset.
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Figure 10. Absolute differences in N2pc amplitude estimates between temporal averaging (TA) and NN as a function of the
average standard deviation (SD) of the N2pc across sweeps for the real DatasetR1 (left panel) and DatasetR2 (right panel),
considering lateral targets.

The standard TA method was chosen to compare
and evaluate the prediction performance of the NN.
In simulation, the NN outperformed TA both when
a high and a low number of sweeps was used, with
a greater improvement in performance as the num-
ber of sweeps was reduced. The NN scored a decrease
of about 50% for the MSEp and 15% for the global
ADE compared to the TA method when trained with
40 sweeps and of about 20% for the MSEp and 20%
for the global ADEwhen trained with 100 sweeps. On
real data, since the ground truth is unknown, we can-
not quantify the estimation error for either the NN
or the TAmethod and results can be only qualitatively
discussed. However, given the results in the simulated
scenario—especially those for Nswp = 40 (top panel
of figure 6)—and those obtained for central targets
on real data, where we expected a theoretical amp-
litude of zero for the N2pc, we can speculate that it
is likely that the most correct results are those of the
NN. The discrepancy between the methods observed
for some subjects, especially in DatasetR2 for lateral
targets, could be attributable to other aspects that,
for the sake of simplicity, have not been considered
in this preliminary study but that will be investig-
ated in the future. For example, we did not analyze
the effect of noise level—which more likely affects
TA estimates than NN ones, since the features fed to
the NN include information about noise by means of
the pre-stimulus SD—or the variability of the N2pc
across sweeps. This speculation is supported by a fur-
ther analysis we have run, which shows that the dis-
crepancy between NN and TA increases as the aver-
age standard deviation across sweeps in theN2pc time

range increases (figure 10), pointing to a strong role
of noise in the divergence of results.

A potentially critical aspect of the methodology
illustrated in this paper concerns the possible leak-
age of information between synthetic DatasetS1 and
real DatasetR1. We presented in detail the strategy
we used to simulate hundreds of CL and IL sweeps
from each of the four average templates estimated
from the design-cell clusters of DatasetR1. The ran-
dom perturbation of the average models in the N2pc
time range only, as well as the random coupling of
CL and IL sweeps to derive the N2pc, created thou-
sands of N2pc signals with a wider range of para-
meters and features to be fed to the NN than that of
DatasetR1 (and of DatasetR2 as well), hence reducing
to the minimum the leakage of information between
the two datasets and allowing a better generaliza-
tion capability of the NN. Nevertheless, we recog-
nize as a limitation of the proposed approach that
some statistical properties of the average models cre-
ated fromDatasetR1might influence the generation of
DatasetS1, and some statistical properties of the real
DatasetR1 may have intruded the synthetic scenario.
For example, we did not consider the influence of
the electrode montage on the measured data or situ-
ations of high experimental noise, which may reduce
the performance of our NN on datasets with very dif-
ferent experimental settings.

As far as the features set is concerned, we fed the
NN with both EEG powers and other time-related
features extracted from both the N2pc and the related
CL and IL ERPs. However, we did not observe a
significant pattern of any feature when considering
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negative or positive (i.e. inverted) N2pcs. Therefore,
to make the network able to discriminate inverted
N2pcs, here we simply considered in the feature set
the difference between the average CL and IL signal
in the N2pc time window. In simulation, we observed
that this feature was able to distinguish positiveN2pcs
obtained from the average of 100 EEG sweeps per
design-cell cluster with an error below 3%. Further
studies could investigate whether other more specific
features, which could discriminate between positive
and negative N2pcs, exist. The first step towards this
aim would be an investigation of the neuropsycholo-
gical origin of these inverted N2pcs.

The methodology implemented in this work
moves towards the development of novel strategies
for the reliable estimate of small ERP compon-
ents. Prior attempts sharing some similarity with
the present approach employed machine-learning
algorithms for the diagnosis of pathologies like
schizophrenia [27, 28], epilepsy [29], autism [30],
and online decoding of motor imagery movements
[31–33]. Machine-learning methods were applied
also to predict single-trial individual brain responses.
Si et al proposed a supervised learning strategy to
extract the discriminative spatial network pattern to
predict the individual decision-making response (i.e.
acceptance rate) from single-trial EEG data [34]. Sub-
ject’s acceptance rate was also predicted with mul-
tiple regression models [35]. TF domain, instead, was
largely used in the EEG field for selecting particu-
lar features to diagnose primary insomnia [36] or
for automatically identifying sleep stages [37]. The
main innovation of our contribution consists in the
successful combination of TF-derived indices and
machine-learning tools to predict the amplitude of a
small subtractive ERP response using a minimal EEG
dataset.

7. Conclusion

The proposed NN yielded accurate individual N2pc
amplitude estimates, without loss of accuracy, from
a reduced number of sweeps. Results showed that
the amplitude of individual N2pcs could be reliably
predicted with as few as 40 EEG sweeps per each
cell of the experimental design (i.e. 80 in total for
both the CL and IL components of the N2pc). These
results provide evidence of the potentiality of mer-
ging TF domain and machine-learning tools in the
reliable prediction of ERP components. From the
point of view of the cognitive neuroscientists inter-
ested in studying the N2pc, the possibility of reliably
detecting the N2pc using a relatively small number
of EEG sweeps opens a whole new range of possib-
ilities. Reduced time and costs for experimentation
apart, researchers endeavoring to design paradigms
using unprecedented visual search variants may find
it useful to carry out quick pilot tests to ascertain that
an N2pc for lateral stimuli can indeed be found prior

to turn to longer and more articulated experimental
sessions. Studies of selective visuo-spatial attention
processes in patients, piloting of new visual search
designs and brain-computer interface (BCI) applic-
ations might highly benefit from the use of this NN
with short-duration tests.

Margins of improvement and possible future
developments of this work include the identification
of other features based on novel neurophysiological
findings for inverted N2pcs and a further reduction
of the number of EEG trials necessary to probe the
individual N2pc, up to possibly reach its single-trial
detection, which would obviously be an important
breakthrough in N2pc-based BCI research [2, 38, 39].
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